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Abstract
1.	 Complex networks have been useful to link experimental data with mechanistic 

models, and have become widely used across many scientific disciplines. Recently, 
the increasing amount and complexity of data, particularly in biology, has 
prompted the development of multidimensional networks, where dimensions re-
flect the multiple qualitative properties of nodes, links or both. As a consequence, 
traditional quantities computed in single dimensional networks should be adapted 
to incorporate this new information. A particularly important problem is the de-
tection of communities, namely sets of nodes sharing certain properties, which 
reduces the complexity of the networks, hence facilitating its interpretation.

2.	 In this work, we propose an operative definition of ‘function’ for the nodes in 
multidimensional networks. We exploit this definition to show that it is possible 
to detect two types of communities: (a) modules, which are communities more 
densely connected within their members than with nodes belonging to other com-
munities, and (b) guilds, which are sets of nodes connected with the same neigh-
bours, even if they are not connected themselves. We provide two quantities to 
optimally detect both types of communities, whose relative values reflect their 
importance in the network.

3.	 The flexibility of the method allowed us to analyse different ecological exam-
ples encompassing mutualistic, trophic and microbial networks. We showed that 
by considering both metrics we were able to obtain deeper ecological insights 
about how these different ecological communities were structured. The method 
mapped pools of species with properties that were known in advance, such as 
plants and pollinators. Other types of communities found, when contrasted with 
external data, turned out to be ecologically meaningful, allowing us to identify 
species with important functional roles or the influence of environmental vari-
ables. Furthermore, we found that the method was sensitive to community-level 
topological properties like nestedness.

4.	 In ecology there is often a need to identify groupings including trophic levels, 
guilds, functional groups or ecotypes. The method is therefore important in pro-
viding an objective means of distinguishing modules and guilds. The method we 
developed, functionInk (functional linkage), is computationally efficient at handling 
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1  | INTRODUC TION

Networks have played an important role in the development of 
ideas in ecology, particularly in understanding food webs (Cohen 
& Stephens, 1978), and flows of energy and matter in ecosystems 
(MacArthur, 1955). However, modern ecological datasets are becom-
ing increasingly complex, notably within microbial ecology, where 
multiple types of information (taxonomy, behaviour, metabolic ca-
pacity, traits) on thousands of taxa can be gathered. A single network 
might therefore need to integrate different sources of information, 
leading to connections between nodes representing relationships of 
different types, and hence with different meanings. Advances in net-
work theory have attempted to develop tools to analyse these more 
sophisticated networks, encompassing multiplex, multilayer or multi-
variate networks, reviewed in (Kivelä et al., 2014). There could there-
fore be much value in extending complex networks tools to ecology 
in order to embrace these new concepts.

In this paper we aim to address a particularly relevant problem 
in complex networks theory, namely the detection of ‘communities’ 
(Fortunato, 2010) when the network contains different types of links. 
In addition, we are interested in finding a method with the flexibil-
ity to identify different types of communities. This is motivated by 
the fact that, in ecology, it is recognized that communities may have 
different topologies (Allesina & Pascual, 2009) and often an intrinsic 
multilayer structure (Pilosof, Porter, Pascual, & Kéfi, 2017). We aim 
to detect two main types of communities. Firstly, the most widely 
adopted definition of community is the one considering sets of nodes 
more densely connected within the community than with respect to 
other communities, often called modules (Boccaletti, Latora, Moreno, 
Chavez, & Hwang, 2006). An example in which modules are expected 
is in networks representing significant co-occurrences or segrega-
tions between microbial species, when these relationships are driven 
by environmental conditions. Since large sets of species may simulta-
neously change their abundances in response to certain environmen-
tal variables (Carr, Diener, Baliga, & Gibbons, 2019; Pascual-García, 
Tamames, & Bastolla, 2014), this results in large groups of all-against-all  
co-occurring species, and between-group segregations. Secondly, we 
are interested in finding nodes sharing a similar connectivity pattern 
even if they are not connected themselves. An example comes from 
networks connecting consumers and their resources, when commu-
nities are determined looking for consumers sharing similar resource 
preferences. This idea is aligned with the classic Eltonian definition of 
niche, which emphasizes the functions of a species rather than their 

habitat (Elton, 1927). We call this second class of communities guilds, 
inspired by the ecological meaning in which species may share simi-
lar ways of exploiting resources (i.e. similar links) without necessarily 
sharing the same niche (not being connected themselves), empha-
sizing the functional role of the species (Simberloff & Dayan, 1991). 
Consequently, guilds may be quite different to modules, in which 
members of the same module are tightly connected by definition. The 
situation in which guilds are prevalent is known as disassortative mix-
ing (Newman & Leicht, 2007), and its detection has received compar-
atively less attention than the ‘assortative’ situation (which results in 
modules) perhaps with the exception of bipartite networks (Estrada 
& Rodríguez-Velázquez, 2005; Newman, 2006).

There are many different approximations for community detec-
tion in networks, as summarized in (Schaub, Delvenne, Rosvall, & 
Lambiotte, 2017). However, despite numerous advances in recent 
years, it is difficult to find a method that can efficiently find both mod-
ules and guilds in multidimensional networks, and that is able to iden-
tify which is the more relevant type of community in the network of 
interest. This might be because there is no algorithm that can perform 
optimally for any network (Peel, Larremore, & Clauset, 2017), and be-
cause each type of approximation may be suited for some networks 
or to address some problems but not for others, as we illustrate below.

Traditional strategies to detect modules explore trade-offs 
in quantities like the betweeness and the clustering coefficient 
(Boccaletti et al., 2006), as in the celebrated Newman–Girvan algo-
rithm (Girvan & Newman, 2002). Generalizing the determination of 
modules to multidimensional networks is challenging. Consider, for 
instance, that a node A is linked with a node B and this is, in turn, 
linked with a node C, and both links are of a certain type. If A is then 
linked with node C with a different type of link, should the triangle 
ABC be considered in the computation of the clustering coefficient? 
One solution proposed comes from the consideration of stochastic 
Laplacian dynamics running in the network (Lambiotte, Delvenne, & 
Barahona, 2008), where the permanence of the informational fluxes 
in certain regions of the network reflects the existence of commu-
nities. This approximation has been extended to consider multilayer 
networks (Mucha, Richardson, Macon, Porter, & Onnela, 2010), even 
if there are modules defined in different layers that highly overlap, 
hence defining communities (combination of modules) across layers 
(De Domenico, Lancichinetti, Arenas, & Rosvall, 2015). A funda-
mental caveat for these methods is that the links must have a clear 
interpretation for how their presence affects informational fluxes. 
Returning to the above example, if the links AB and BC represent 

large multidimensional networks since it does not require optimization procedures 
or tests of robustness. The method is available at: https://github.com/apasc​ualga​
rcia/funct​ionInk.
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mutualistic interactions and the link AC represents a competitive 
one, can a random walk follow the link AC when this interaction does 
not describe a flux of biomass between the species but rather a dis-
ruption in the flux of biomass of AB and BC?

A related approach searches for modules using an optimization 
function that looks for a partitioning in a multilayer network that 
maximizes the difference between the observed model and a null 
model which considers the absence of modules (Newman, 2006). 
This strategy can be applied to multidimensional networks, but 
raises questions such as which is the appropriate null model, and 
how to determine the coupling between the different layers defining 
the different modes of interaction (Bazzi et al., 2016). In addition, 
since these approximations focus on the detection of modules, they 
neglect the existence of guilds or other network structures.

Regarding the search of guilds, this problem has received notable 
attention in social sciences following the notion of structural equiv-
alence. Two nodes are said to be structurally equivalent if they have 
the same connectivity in the network (Wasserman & Faust, 1994). 
The connectivity may be defined either analysing if two nodes share 
the same neighbours, if two nodes are connected with neighbours 
of the same type even if they are not necessarily the same (follow-
ing some preassigned roles for the nodes, e.g. prey are structurally 
equivalent because are connected to predators) or a combination of 
both. Social agents often have an assigned role, which is why struc-
tural equivalence is particularly important in social networks.

An approximation that has exploited the idea of structural equiv-
alence is stochastic blockmodelling (Holland, Laskey, & Leinhardt, 
1983), which considers generative models with parameters fitted to 
the observed network. The approach brings greater flexibility be-
cause different models can accommodate different types of commu-
nities (De Bacco, Power, Larremore, & Moore, 2017). Therefore, this 
approximation could be used to search for both modules and guilds 
(Newman, 2016). There are, however, also caveats to the approach, 
since it is a challenge to determine whether the underlying assump-
tions of a particular block model is appropriate for the data being 
used (Karrer & Newman, 2011). Moreover, even when the model 
brings an analytically closed form, the estimation of the parame-
ters may be computationally intractable (Valles-Catala, Massucci, 
Guimera, & Sales-Pardo, 2016), hence requiring costly optimality 
procedures or tests for robustness (Ganji et al., 2018).

In this work, we build on the idea of structural equivalence not-
ing that a node belonging to either a guild or a module is, in both 
cases, structurally equivalent to the other nodes in its community. 
This observation was acknowledged in social sciences in the defini-
tion of λ-communities (Borgatti, Everett, & Shirey, 1990), which are 
types of communities encompassing both modules and guilds, whose 
relevance has also been previously recognized in the ecological lit-
erature (Allesina & Pascual, 2009; Luczkovich, Borgatti, Johnson, & 
Everett, 2003). From this observation, we wondered whether it is 
possible to find a similarity measure between nodes that quantifies 
their structural equivalence, even when different types of links are 
considered. We could then join nodes according to this similarity 
measure while monitoring whether the communities that are formed 

are guilds or modules. A similar approach was investigated by Yodzis 
et al. to measure trophic ecological similarity (Yodzis & Winemiller, 
1999), but they did not identify an appropriate threshold for deter-
mining community membership (which they call ‘trophospecies’).

We have developed an approach that builds on these results and 
develops a method to determine objective thresholds for identifying 
modules and guilds in ecological networks. We show that a modifica-
tion of the community detection method developed by Ahn, Bagrow, 
and Lehmann (2010), leads to the identification of two quantities we 
call internal and external partition densities. For a set of nodes joined 
within a community by means of their structural equivalence similarity, 
the partition densities quantify whether their similarities come from 
connections linking them with nodes outside the community (exter-
nal density) or within the community (internal density). Notably, our 
method generates maximum values for the two partition densities 
along the clustering, allowing us to objectively determine thresholds 
for the similarity measure in which the communities correspond to the 
definition of modules (for the internal density) and guilds (external den-
sity). Since the elements within both types of communities are struc-
turally equivalent, modules and guilds can be understood as different 
kinds of functional groups—in the Eltonian sense—and this is the name 
we adopt here. We reserve the term ‘community’ for a more generic 
use, because other types of communities beyond functional groups 
may exist, such as core-periphery structures (Guimera & Amaral, 2005).

We call our method functionInk (functional linkage), emphasizing 
how the number and types of links of a node determine its functional 
role in the network. We illustrate its use by considering complex 
ecological examples, for which we believe the notion of functional 
role is particularly relevant. We show in the examples that, by com-
bining the external and internal partition densities, we are able to 
identify the underlying dominant structures of the network (either 
towards modules or towards guilds). Moreover, selecting the most 
appropriate community definition in each situation provides results 
that are comparable to state-of-the-art methods. This versatility in a 
single algorithm, together with its low computational cost to handle 
large networks, makes our method suitable for any type of complex, 
multidimensional network.

2  | MATERIAL S AND METHODS

2.1 | Structural equivalence similarity in 
multidimensional networks

Our method starts by considering a similarity measure between all 
pairs of nodes that quantifies the fraction of neighbours connected 
with links of the same type that they share (Figure 1). This is a natu-
ral definition of structural equivalence for multidimensional networks, 
which is agnostic to the specific information that the interaction car-
ries. For simplicity, we present a derivation for a network that contains 
two types of links. We use undirected positive (+) interactions (e.g. 
a mutualism) and negative (−) interactions (e.g. competition) to illus-
trate the method, but these could be replaced by any two link types. 
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Extending the method to an arbitrary number of link types is presented 
in the Supporting Information. We call {i} the set of N nodes and {eij} 
the set of M links in a network. We call n(i) the set of neighbours of i, 
that can be split into different subsets according to the types of links 
present in the network.

For two types of links, we split the set of neighbours linked with 
the node i into those linked through positive relationships, n+(i), or 
through negative relationships, n−(i); we follow a notation similar to 
the one presented in (Ahn et al., 2010), but note that n(i) there de-
notes neighbours irrespective of the type of links. Distinguishing link 

types induces a division in the set of neighbours of a given node into 
subsets sharing the same link type, as shown in Figure 1a. More spe-
cifically, in the absence of link types we define the Jaccard similarity 
between two nodes i and j as:

where |.| is the cardinality of the set (the number of elements it con-
tains). This metric was shown to lead to clusters of species that are 

(1)S(J)(i, j) =
|n(i) ∩ n(j)|
|n(i) ∪ n(j)|

,

F I G U R E  1   Illustration of the method. (a) The similarity between nodes i and j is computed considering the neighbours of each node and 
the types of interactions that link them. In this example, two types of link are shown: positive (+) interactions are solid links connecting the 
sets of neighbours n+(i) and n+( j). Negative (−) links are shown as dotted links connecting the sets of neighbours n−(i) and n−( j). Following 
Equation 2, |n(i) ∩ n(j)| = 2 and |n(i) ∪ n(j)| = 8, which yields S(J)(i, j) = 2∕8. If, for instance, eik changes from being − to +, the node k would no 
longer belong to the set n(i) ∩ n(j), being the new similarity: S(J)(i, j) = 1∕8. In Ahn et al. (2010) the similarity computed in this way is assigned 
to the links eik and ejk. (b) Structural equivalence can be defined in different ways. In the top-left network we considered that blue and yellow 
colours encode a priori information describing the roles of the nodes. Identifying sets of nodes connected similarly to nodes with equivalent 
roles (i.e. the emphasis is on the roles and not on the specific neighbours, a situation called regular equivalence; Borgatti & Everett, 1989) 
leads to two communities (the yellow and blue sets of nodes themselves), because every blue node is connected to a yellow one. The 
method of Guimera and Amaral (2005), determines communities focusing on their topological role (top-right network) by identifying central 
(A and B), peripheral (A1–A3 and B1–B5) and connector nodes (C and D). functionInk (bottom network) defines communities by joining 
nodes with approximately the same neighbours and, if there are roles for the nodes, these can be incorporated defining link types (one 
type for each pair of roles connected, in the example only one type is needed). All non-zero Jaccard similarities of the example are shown. 
Clustering these similarities will lead to different partitions and, stopping at S(J) = 1∕4, communities being the intersection of those found 
in the above networks are obtained, highlighting the potential to identify communities considering both the roles and topological features. 
Figure adapted from Guimera and Amaral (2005)
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more consistent with cophenetic clustering than other alternatives 
(Yodzis & Winemiller, 1999), and generalizing this expression to mul-
tiple attributes is achieved simply by differentiating the type of neigh-
bours depending on the types of connections. For two attributes (see 
Supporting Information for an arbitrary number of attributes) this  
leads to

Accounting for the weight of the links can be made with the gen-
eralization of the Jaccard index provided by the Tanimoto coefficient 
(Tanimoto, 1958), S(T)(i, j), presented in Supporting Information.

Finally, we introduce a modification to the above definition of 
S(J) to account for the particular case in which i and j are only con-
nected between themselves, i.e. they do not share any neighbours 
according to the above definition. This is problematic because we 
want to distinguish this situation from the one in which they do not 
share any nodes, for which we get S(i, j) = 0. We resolve this situation 
by considering that a node is its own neighbour, in which case two 
nodes only connected between themselves would yield S(i, j) = 1. 
However, we note that this would also be the value between two 
nodes that are connnected and that also share all neighbours (a motif 
known as a clique), irrespective of the number of neighbours they 
share, because the similarity measure saturates. We argue that this 
situation is unsatisfactory because there is stronger evidence that 
two nodes are structurally equivalent when they share connections 

and creating transitive motifs, since transitivity is a key property in 
the definition of equivalence classes (Pascual-García, Abia, Ortiz, & 
Bastolla, 2009). The situation can be resolved by using the conven-
tion that, for two connected nodes, the intersection set is reduced 
by one, i.e. |n(i) ∩ n(j)| → |n(i) ∩ n(j)| − 1. This convention has the in-
teresting property that, for cliques, increasing the number of nodes 
involved also increases the similarity between its members, resulting 
in an upper bound of one and a lower bound of 1/2 (a 2-node clique). 
In addition, two connected nodes that share neighbours but are not 
connected themselves have a smaller difference in the similarity 
compared to nodes within cliques that share the same number of 
neighbours, thus facilitating the identification of guilds. In Figure 1 
we illustrate the computation of this similarity with a simple example.

2.2 | Identification of communities through 
clustering and similarity cut-offs

Once the similarity between nodes is computed, the next objec-
tive is to define and identify structurally equivalent communities. 
As explained in the Introduction, there are different possible defini-
tions of structural equivalence, illustrated in Figure 1b. In the figure 
is shown how the similarity metric proposed together with an ag-
glomerative clustering to join nodes in communities, encapsulates 
these different notions of structural equivalence. A critical question, 
however, is how to objectively determine the threshold to stop the 
clustering (Harrer & Schmidt, 2013)?

(2)S(J)(i, j) =
|n+(i) ∩ n+(j)| + |n−(i) ∩ n−(j)|
|n+(i) ∪ n+(j) ∪ n−(i) ∪ n−(j)|

.

F I G U R E  2   Definition of guilds and modules. For each set of nodes nint
c

 belonging to the same community c (nodes within the same shaded 
area) we consider the number of links within the community (black dashed links, called mint

c
 in the main text) out of the total number of 

possible internal links, to compute the internal partition density (see upper curves). We also computed the external partition density, which 
is the density of links connecting nodes external to the community (mext

c
, solid red lines linking nodes belonging to different communities) out 

of the total number of possible external links. We call guilds the communities determined at the maximum of the external partition density, 
and modules those found at the maximum of the internal partition density. The relative value of the external and internal partition densities 
allow us to estimate which kind of community dominates the network. In the example, guilds dominate the network on the left, and modules 
dominate the network on the right
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This question is often addressed by iteratively ‘partitioning’ the 
network into the distinct communities, and monitoring each par-
tition with a function having a well-defined maximum or minimum 
that determines the threshold of the optimal partition. In Ahn et al. 
(2010), the authors proposed to join links of a network according to a 
similarity measure between the links with an agglomerative cluster-
ing, and to monitor the clustering with a quantity called the partition 
density. The partition density is the weighted average across com-
munities of the number of links within a community out of the total 
possible number of links (which depends on the number of nodes in 
the community). We re-considered the method of Ahn et al. (2010; 
which was originally defined over partitions of links, see Supporting 
Information), to work over partitions of nodes, and we developed 
two partition densities, with two distinct meanings. To develop these 
measures we noted that, when joining nodes into a cluster, we are 
concluding that these nodes share (approximately) the same neigh-
bours connected with the same type of links, but the nodes joined 
may or may not be connected between them. We therefore redefined 
the partition density so that it distinguishes between the contribution 
to the link density arising from the connections within a community 
from connections shared with external nodes between communities.

Formally, given a node i, we differentiate neighbours that are 
within the same community (nint(i), where int stands for ‘interior’) 
from neighbours that are in different communities (next(i)), hence 
n(i) = nint(i) ∪ next(i) (Figure 2). For a singleton (a community of size 
one) nint(i) = {i} and next(i) = �. Similarly, the set of links m(i) connect-
ing the node i with other nodes can also be split into two sets: the 
set connecting the node with neighbours within its community mint(i)

, and those connecting it with external nodes mext(i). This distinc-
tion was also considered in the problem of coloring nodes (Everett 
& Borgatti, 1996).

Therefore, for each partition of nodes into T communities our 
method identifies, for each community c, the total number of nodes 
it contains, nint

c
, and the total number of links connecting these nodes 

mint
c

. In addition, it computes the total number of nodes in other com-
munities that have connections to the nodes in the community, next

c

, through a number of links mext
c

. Clearly, to identify next
c

 neighbours, 
at least next

c
 links are required and thus an increasing number of links 

in excess, mext
c

− next
c

 are necessary to obtain an increasing contribu-
tion to the similarity of the nodes in the community through exter-
nal links (however, this is not a sufficient condition, see Supporting 
Information). In this way, a relevant quantity to characterize a com-
munity is the fraction of links in excess out of the total possible num-
ber 

(
mext

c
− next

c

)/
next
c

(
nint
c

− 1
)
. We note that this calculation does 

not take into account multiple link types. The weighted average of 
this quantity through all communities leads to the definition of ex-
ternal partition density:

where M is the total number of links. We now follow a similar reasoning 
to consider a necessary condition to obtain an increasing contribution 

to the similarity of the nodes through the internal links (see Supporting 
Information). We acknowledge that in a community created by join-
ing nodes through the similarity measure we propose, it may happen 
that nint

c
> 0 even if mint

c
= 0. Therefore, any link is considered a link in 

excess, leading to the following expression for the internal partition 
density, which quantifies the fraction of internal links in excess out of 
the total:

Finally, we define the total partition density as the sum of both 
internal an external partition densities:

and hence, if all the fractions in Dint and Dext are equal to one, 
i.e. all possible links in excess are realized, Dtotal equals to one. Since 
at the beginning of the clustering the communities have a low num-
ber of members, most of the contribution towards Dtotal comes from 
Dext while, in the final steps, where the communities become large, 
Dint will dominate. All three quantities will reach a maximum value 
along the clustering (for the internal it could be at the last step) and, 
if one of them clearly achieves a higher value, it will be indicative 
that one type of functional group is dominant in the network. If that 
is the case, the maximum of Dtotal—which is always larger or equal to 
max

(
max

(
Dint

)
, max

(
Dext

))
—, will be at a clustering step close to the 

step in which the dominating quantity peaks. If neither Dext nor Dint 
clearly dominates, Dtotal will peak at an intermediate step between 
the two partial partition densities maxima, suggesting that this in-
termediate step is the best candidate of the optimal partition for the 
network. Communities determined at this intermediate point where 
they can be both guilds and modules will be called, generically, func-
tional groups.

3  | RESULTS

3.1 | Plant-pollinator networks

To illustrate the use of the method we start analysing a synthetic 
example. In ecological systems, species are often classified into com-
munities according to their ecological interactions, such as in mu-
tualistic networks of flowering plants and their animal pollinators. 
These networks are characterized by intraspecific and interspecific 
competition within both the pool of plants and the pool of animals, 
and by mutualistic relationships between plants and animals, leading 
to a bipartite network.

To investigate the performance of our method and, in particular, 
the influence of the topological properties into the partition density 
measures, we generated a set of artificial mutualistic networks with 
diverse topological properties, following the method presented in 
(Pascual-García & Bastolla, 2017). For the mutualistic interactions, 

(3)Dext =
1

M

∑

c

mext
c

2

(
mext

c
− next

c

)

next
c

(
nint
c

− 1
) ,

(4)Dint =
1

M

∑

c

mint
c

2mint
c

nint
c

(
nint
c

− 1
) .

Dtotal = Dint + Dext,
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we focused on two properties: the connectance �mut, which is the 
fraction of observed interactions out of the total number of possible 
interactions, and the nestedness ν as defined in (Bastolla et al., 2009; 
see Supporting Information), which codifies the fraction of interac-
tions that are shared between two species of the same pool, aver-
aged over all pairs of species. We selected these measures for their 
importance in the stability-complexity debate in mutualistic systems 
(Pascual-García & Bastolla, 2017), and the similarity between the 
nestedness (which, in the definition we adopt here, represents the 
mean ecological overlap between species) and the notion of struc-
tural equivalence we considered (see Supporting Information). For 
the competition matrices, we considered random matrices with 
different connectances, �comp, since it is difficult to estimate direct 
pairwise competitive interactions experimentally, and they are fre-
quently modelled with a mean field competition matrix.

We verified that in all networks the set of plants and animals 
are joined in the very last step of the clustering irrespective of the 
clustering method used, a result that must follow by construction. As 
expected, the curves monitoring the external and internal partition 
densities depend on the properties of the networks. We illustrate 
this finding in Figure 3, where we have selected two networks with 
contrasting topological properties. One of the networks has high 
connectance within the pools and low connectance and nestedness 
between the pools. The internal partition density peaks at the last 
step minus one (i.e. where the two pools are perfectly separated) 
consistent with the definition of modules, where the intra-mod-
ules link density is higher than the inter-modules link density. On 
the other hand, the second network has intra-pool connectance 
equal to zero, and very high connectance and nestedness between 
the pools (see Figure 3). We selected �comp = 0 for simplicity in the 
network representation, but similar results are obtained for low val-
ues of �comp, see for instance Figure S4. In this second network (see 
Figure 3, right panel), only the external partition density peaks and, 
at the maximum, the communities that we identified clearly reflect 
the structural equivalence of the node members in terms of their 
connectance with nodes external to the group, as we expect for the 
definition of guilds. The ecological information retrieved for guilds 
is clearly distinct from the information retrieved for the modules, 
the former being related to the topology of the network connecting 
plants and animals. We observe that guilds identify specialist species 
clustered together, which are then linked to generalist species of the 
other pool: a structure typical of networks with high nestedness.

The method identified several interesting guilds and connec-
tions between them. For instance, generalists Plant 1, Animal 1 and 
Animal 2 (and to a lesser extent Plant 2) have a low connectivity 
between them but, being connected to many specialists, determine 
a region of high vulnerability, in the sense that a directed perturba-
tion over these species would have consequences for many other 
species. This is confirmed by the high betweeness of these nodes 
(proportional to the size of the node in the network). In addition, the 
algorithm is able to identify more complex partitions of nodes into 
communities. As an example of this, Animal 16 (turquoise) is split 
from Animals 10 and 11 (cyan), which form a second community, and 

from Animals 15, 18 and 19 (light pink) that are joined into a third 
community, despite of the subtle connectivity differences between 
these six nodes. Finally, it also detects communities of three or more 
species that have complex connectivity patterns which, in this con-
text, may be indicative of functionally redundant species (e.g. red 
and blue communities).

Examples with other intermediate properties are analysed in 
the Figures S2 and S3. Broadly speaking, either the internal or the 
total partition density maximum peaks at the last step minus one, 
allowing for detection of the two pools of species. Nevertheless, the 
method fails to find these pools in situations in which the similarity 
between members of distinct pools is comparable to the similarity 
of members belonging to the same pool. This may be the case if the 
connectances are small (see Figure S4). The relative magnitude of 
the external versus internal partition density depends on the con-
nectance between the pools of plants and animals and on the con-
nectance within the pools respectively (see Figure S2). Interestingly, 
networks for which the nestedness is increased keeping the re-
maining properties the same generated an increase in the external 
partition density (see Figure S3). These examples illustrate how the 
external partition density is sensitive to complex topological prop-
erties, in particular to an increase in the dissasortativity of the net-
work, as expected when guilds are dominant.

3.2 | Trophic networks

We tested our method in a comprehensive multidimensional ecological 
network of 106 species distributed in trophic layers with approximately 
4,500 interactions, comprising trophic and non-trophic interactions 
(approximately 1/3 of the interactions are trophic; Kéfi, Miele, Wieters, 
Navarrete, & Berlow, 2016). This network was analysed looking for 
communities extending a stochastic blockmodelling method (Newman 
& Leicht, 2007) to deal with different types of interactions (Kéfi et al., 
2016). The estimation of the parameters of the model through an 
Expectation-Maximization algorithm requires controlling the influence 
of random starting conditions since each initial condition may lead to 
a different result, and hence is needed to test the robustness of the 
results. Here we show that, in this example, our method is comparable 
with this approximation, and it has the advantage of being determin-
istic. Moreover, the simplicity of the method allows us to handle large 
networks with arbitrary number of types of links and to evaluate the 
consistency of the communities found, as we show in the following.

Our method finds a maximum for the internal density when there 
are only three communities. Previous descriptions of the network 
identified three trophic levels in the network (Predators, Herbivores 
and Basal species). The latter are further subdivided into subgroups 
(e.g. Kelps, Filter feeders), and there are some isolated groups like 
one Omnivore and Plankton. To match these subgroups we observed 
that the total partition density reaches a maximum close to the max-
imum of the external partition density (step 69) and maintains this 
value along a plateau until step 95 (see Figure S5). We analysed re-
sults at both clustering thresholds finding that, at step 95, we obtain 
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modules with a good agreement with the trophic levels, as shown in 
Figure 4. On the other hand, at step 69 we find a larger number of 
communities, some of which fit the definition of modules and others 
the definition of guilds (see Figure 4).

To shed some light on the information obtained from this sec-
ond network, we compared the classification obtained by Kéfi et al. 
(2016; in the following reference classification) and our method. We 
computed several similarity metrics comparing the classification we 

F I G U R E  3   Analysis of synthetic mutualistic networks. (Top left) Partition densities for a network with �comp = 0.5, nestedness ν = 0.15 
and �mut = 0.08 and (top right) for a network with �comp = 0, nestedness ν = 0.6 and �mut = 0.08. The high density of competitive links in the 
first network makes the internal partition density dominate, leading to two modules representing the plant-pollinator pools (bottom left 
network), while reducing the density of competitive links to zero in the second network makes the external partition density to dominate, 
finding guilds (bottom right, with plants labelled ‘Pl’ and animals labelled ‘An’). The small increase in the internal partition density for this 
network at step 59 is due to two specialist species joined at that step (animal 29 and plant 56, shown at the bottom left of the network). 
Nodes are coloured according to their functional group in both networks although, in the network finding guilds (bottom right), specialist 
species are yellow, single species communities are grey and the size of the nodes is proportional to their betweeness
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obtained at each step of the agglomerative clustering with function-
Ink and the reference classification (see Section 2). In Figure 5, we 
show that the similarity between both classifications is highly signif-
icant (Z-score > 2.5) and is maximized when the external partition 
density is also maximized, i.e. at step 69. This is particularly appar-
ent for the Wallace 01, Wallace 10 and Rand indexes (see Figure 6; 
Figure S6). Notably, communities in the reference classification were 
also interpreted as functional groups in the same sense proposed 
here (Kéfi et al., 2016).

Nevertheless, there are some discrepancies between both classi-
fications. In particular, although there is a complete correspondence 
between the two largest communities in both classifications, there 
are a number of intermediate communities in the reference classifi-
cation whose members are classified differently in our method. To 
illustrate these discrepancies, we plotted a heatmap of the Tanimoto 
coefficients of members of four communities of intermediate sizes 
containing discrepancies, showing their membership in both the 
reference and the functionInk classification with different colours 
(see Figure 5). The dendrograms cluster rows and columns comput-
ing the Euclidean distance between their values. Therefore, these 
dendrograms are very similar to the method encoded in function-
Ink, and the communities must be consistent, representing a pow-
erful way to visually inspect results. Indeed, the dendrograms are in 
correspondence with both functionInk and reference communities, 

but we observe some discrepancies. For instance, the community 
found by the reference classification containing several Petrolishtes 
species, joins species that have low similarity regarding the number 
and type of interactions as measured by the Tanimoto coefficients, 
while functionInk joins together the three species with high simi-
larity, leaving aside the remainder species. Therefore, despite the 
methodological differences between both methods, the different 
classifications produce similar outcomes, but result in different sized 
clusters (a different cut-off in the dendrograms, with functionInk 
finding finer clusters). The advantage of functionInk is then appar-
ent in the simplicity of the method, which permits validation through 
visual inspection of the consistency of the classification.

3.3 | Microbial networks

We discuss a last example of increasing importance in current eco-
logical research, which is the inference of interactions among mi-
crobes sampled from natural environments. We considered a large 
matrix with more than 700 samples of 16S rRNA operative taxo-
nomic units (OTUs) collected from rain pools (water-filled tree-holes) 
in the United Kingdom (Pascual-García & Bell, 2019a; Rivett & Bell, 
2018; see Supporting Information). We analysed β-diversity similar-
ity of the samples contained in the matrix with the Jensen–Shannon 

F I G U R E  4   Determination of guilds and modules in a large trophic network. Trophic networks with links representing trophic (grey), non-
trophic positive (red) and negative (green) interactions. (Left) Nodes are grouped according to the classification found in Kéfi et al. (2016; 
reference classification), and coloured by the guilds found with functionInk at the maximum of the external partition density. (Right) Nodes 
are grouped according to the trophic levels and coloured by the modules found by functionInk (see main text for details). The modules 
separate the three main trophic levels: predators, herbivores and basal species, further separating some of them into subgroups, such as 
filter feeders and plankton, which is an orphan module

(a)

(b)
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divergence metric (Endres & Schindelin, 2003), further classifying 
the samples automatically, leading to six disjoint clusters we call β-
diversity classes (i.e. clusters of samples, see Section 2). Next, we in-
ferred a network of significant positive (co-occurrences) or negative 
(segregations) correlations between OTUs using SparCC (Friedman 

& Alm, 2012; see Section 2), represented in Figure S7. Applying func-
tionInk to the network of inferred correlations, we aimed to under-
stand the consistency between the results of functionInk (modules 
and guilds) and the β-diversity classes. The rationale is that, by sym-
metry, communities determined from significant co-occurrences and 

F I G U R E  5   Comparison between the reference classification in the trophic network and functionInk. (Top) Z-score of the Wallace 10 
index (Shotwell, 2013), measuring the similarity between the reference classification and the functionInk method at each clustering step. 
The similarity with the reference classification (see main text) is maximized around the maximum of the external partition density. (Bottom) 
Comparison of communities 1, 4, 7 and 9 in the reference classification, whose members were classified differently by functionInk. Colours 
in the names of species in rows (columns) represent community membership in the reference (functionInk) classifications. The heatmap 
represents the values of the Tanimoto coefficients, and the dendrograms are computed using Euclidean distance and clustered with 
complete linkage. Both classifications are generally consistent with the dendrograms, but with functionInk finding finer clusters
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segregations between OTUs should reflect the similarity and dissim-
ilarity between the samples, hence validating the method.

Contrasting with the trophic network analysed in the previous 
example, the external partition density brings a poor reduction of 
the complexity of the network (peaking after only 22 clustering 

steps), and the internal partition density is higher, hence suggest-
ing a more relevant role for modules (see Figure S8). Differences 
in the three stopping criteria are shown in Figure S7, where two 
large modules are apparent, with a large number of intra-cluster 
co-occurrences (continuous links) and intercluster segregations 

F I G U R E  6   Comparison between β-diversity classes and functional groups in a microbial network. Heatmap representing the Z-score of 
the log-transformed abundances of the OTUs (see Section 2). Species are coloured according to their functional group membership obtained 
at the maximum of the total partition density. Samples are coloured according to one of the six community classes found in Pascual-García 
and Bell (2019a) after optimal clustering with a β-diversity distance. Orphan clusters were excluded except for five Paenibacillus species 
(characteristic of the green class) that were added to the functional group formed by Paenibacillus borealis and Paenibacillus wynii. The 
heatmap blocks show segregation and co-occurrence between modules, further mapping the β-diversity classes
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(dotted links). Note that this is quite different to what is found in 
macroscopic trophic networks, where pools of species (e.g. prey) 
have within module competitive (segregating) interactions, while 
between-modules interactions can be positive (for predators) or 
negative (for prey).

There is reasonable agreement between the functional groups 
found at the maximum of the total partition density and the 
β-diversity classes, as shown in Figure 6. Moreover, the detection 
of networks complements the information that β-diversity classes 
provides, since it is possible to individuate the key players of these 
classes (see Supporting Information). Notably, it was shown in 
Pascual-García and Bell (2019a) that the β-diversity classes might be 
related to a process of ecological succession driven by environmen-
tal variation, the functional groups are likely driven by environmental 
preferences rather than by ecological interactions, likely explaining 
the large number of positive co-occurrences. This speaks against a 
naive interpretation of correlation networks in microbial samples as 
ecological interactions unless environmental preferences are under 
control (Carr et al., 2019; Pascual-García et al., 2014).

4  | DISCUSSION

We presented a novel method for the analysis of multidimensional 
networks, with nodes with an arbitrary number of link types. We im-
plemented the method adopting the definition of structural equiva-
lence, which underlies both the similarity measure definition and the 
rationale behind both the clustering and our definition of partition 
densities. We selected a set-theoretic similarity measure quantifying 
the number of nodes that are shared with the same type of interac-
tion, which we believe is a natural definition of structural equiva-
lence for multidimensional networks, and that has the advantage 
that it does not make assumptions on how the information flows in 
the network, typical of approximations based on Laplacian dynam-
ics (see e.g. Lambiotte et al., 2008; Mucha et al., 2010). This allow 
us to join nodes simply by their similarity, with no need for specific 
assumptions about the network structure. Moreover, this similarity 
can also be naturally linked to two measures of nodes' partitioning 
that allowed us to propose a clear differentiation between modules 
(determined by the maximum of the internal partition density) and 
guilds (determined by the maximum of the external partition density).

Beyond these technical advantages, we illustrated the versatil-
ity of functionInk using several ecological examples. The relative 
value between the internal and external partition density immedi-
ately yields information on whether the network is dominated by 
modules, guilds or intermediate structures. This allows for increasing 
flexibility in the analysis of the networks, and for a more nuanced 
interpretation of network structure and species' roles in the ecosys-
tem. For both mutualistic and trophic networks, the internal parti-
tion density correctly finds the trophic layers, justifying the success 
of the original method (Ahn et al., 2010). Our extension recovered 
the functional groups as determined by Kéfi et al. (2016) through the 
external partition density, and the visual inspection reflects a good 

consistency with the definition we proposed for functional groups 
in terms of structural equivalence. Moreover, in the mutualistic net-
works, we showed that the functional groups discovered in this way 
were sensitive to changes to high-order topological properties such 
as the nestedness.

The analysis of the microbial network was dominated by mod-
ules rather than guilds. Interestingly, these modules had intra-cluster 
positive correlations, contrary to what would be expected in a mac-
roscopic trophic network, where competitive interactions would 
be dominant between members of the same trophic layer. We se-
lected in this example for further exploration the functional com-
munities found at the maximum of the total partition density, with 
some groups having properties closer to those of guilds and others 
closer to modules. The communities that we identified were in good 
agreement with the functional communities found using β-diversity 
similarity (Pascual-García & Bell, 2019a), supporting the consistency 
of the method.

To finish, we highlight some limitations of the method. Firstly, 
it may have problems if the communities are highly overlapping 
(Ahn et al., 2010; De Domenico et al., 2015). In these cases, it 
would be convenient to inspect the partition at the three classifi-
cations given by the different partition densities, since it is likely 
that overlapping communities are split in an earlier classification 
and then joined at later steps of the clustering. Another possibility 
is to combine it with the approximation proposed in (Ahn et al., 
2010), that has both compatible and, at the same time, comple-
mentary results (see Supporting Information). To continue with, 
our approximation does not consider yet the case in which there 
are multiedges in the network, although real networks are typi-
cally very sparse and the probability of finding multiedges is small 
(Karrer & Newman, 2011). Finally, although the method might not 
be able to achieve the generality of other approximations aiming 
to find any arbitrary structure in the network (De Bacco et al., 
2017; Ganji et al., 2018; Newman & Leicht, 2007), such approxi-
mations require either heuristics to find a solution for the param-
eters—and hence a unique optimal solution is not guaranteed—or 
a computationally costly sampling of the parameter space. Our 
method relies on a deterministic method whose results are easily 
inspected, and its computational cost for a network with N node 
scales as N2 for the similarity metric computation plus the cluster-
ing, which is order N. The method is freely available in the address 
(https://github.com/apasc​ualga​rcia/funct​ionInk) and, importantly, 
although we developed it with ecological networks in mind, it can 
be applied to any kind of network.
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