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Abstract

Emergent patterns in complex systems are related with many intriguing phenomena in

modern science. One question that has sparked vigorous debates is if difficulties in the mod-

elization of emergent behaviours are a consequence of ontological or epistemological limita-

tions. To elucidate this question, we propose a novel approximation through constructive

logic. Under this framework, experimental measurements will be considered conceptual

building blocks from which we aim to achieve a description of the microstates ensemble

mapping the macroscopic emergent observation. This procedure allow us to have full con-

trol of any information loss, thus making the analysis of different systems fairly comparable.

In particular, we aim to look for compact descriptions of the constraints underlying a dynam-

ical system, as a necessary a priori step to develop explanatory (mechanistic) models. We

apply our proposal to a synthetic system to show that the number and scope of the system’s

constraints hinder our ability to build compact descriptions, being those systems under

global constraints a limiting case in which such a description is unreachable. This result

clearly links the epistemological limits of the framework selected with an ontological feature

of the system, leading us to propose a definition of emergence strength which we make

compatible with the scientific method through the active intervention of the observer on the

system, following the spirit of Granger causality. We think that our approximation clarifies

previous discrepancies found in the literature, reconciles distinct attempts to classify emer-

gent processes, and paves the way to understand other challenging concepts such as

downward causation.

Introduction

“What urges you on and arouses your, you wisest of men, do you call it will to truth? Will to
the conceivability of all being: that is what I call your will! You first want to make all being
conceivable: for, with a healthy mistrust, you doubt whether it is in fact conceivable. But it
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must bend and accommodate itself to you! Thus will your will have it. It must become smooth
and subject to the mind as the mind’s mirror and reflection.”

Friedrich Nietzsche [1]

Scientific modelling is one of the best examples of a human activity fitting the words of Zar-

athustra: it requires the generation of conceptual representations for processes which fre-

quently depend on uncomfortable features such as measurement inaccuracy, constituents

interdependence or complex dynamics. We attempt to incorporate these representations

within a mathematical or computational framework, which is nothing but a comfortable place

where we reaffirm our confidence in the acquired knowledge. Building a formal framework

provides a favourable environment to reach new analytical and computational results, thus

accelerating the outcome of new predictions that can be firmly settled within the scientific

knowledge after hypothesis testing.

Many interesting challenges in scientific modelling come from complex systems, which are

commonly defined as systems composed of a large number of entities driven by non-linear

interactions between their components and with the environment. In particular, complex sys-

tems may lead to a controversial phenomenon in modern science: the observation of emergent

behaviours. Among this kind of collective behaviours we find phenomena such as magnetism,

patterns observed in dissipative systems like hurricanes or convection cells or, in biological

systems, patterns on animal skins or flocking behaviour. Looking at these examples it seems

that the difficulty arises from an apparent discontinuity between the emergent macroscopic

properties and their microscopic description. Since a basic tenet in the scientific method is

that macroscopic properties are the consequence of the lower level constituents, a critical

question arises here [2]: How is possible to obtain a satisfactory conceptual representation of

emergent macroscopic behaviours when the definition of emergence apparently implies a dis-

continuity between the microscopic and the macroscopic representation?

Explaining the origin of this discontinuity has led to the famous controversy between the

vitalist and reductionist approaches [3, 4]. Our first aim is not to discuss what an emergent

property is or if it is possible to generate an emergent property—e.g. through a simulation or

experiment. We rather wonder which are the features that a complex system exhibiting an

emergent behaviour may have for being more or less accessible to an explanation of that

behaviour by applying the scientific method. Nevertheless, the term explanation is central in

the above discrepancy, as it is clearly apparent in this phrase summarizing the so called emer-
gentist position, seen by Kim as a meeting point in the controversy: Emergent properties are

identified when we observe that a complex system “begins to exhibit genuinely novel proper-

ties that at a first sight are irreducible to, and neither predictable nor explainable in terms of,

the properties of their constituents” [5]. Although this statement brings a good intuition on

when an emergent behaviour is identified, we added the words “at a first sight” to emphasize

our discrepancy: although we agree in that emergent properties are not just a simple extrapola-

tion of lower level properties –thus rejecting a simplistic compositional physicalism– this

does not necessarily mean that emergent behaviours cannot be explained from a microscopic

description and, why not, eventually predicted. At least as scientists, unless strong experimental

and theoretical support reject this possibility, we prefer to remain agnostic. Following the view

of Francis Crick, a natural starting point for a scientist is the decomposition of the system and

we expect that “. . .its behaviour can, at least in principle, be understood from the nature and

behaviour of its parts plus the knowledge of how all these parts interact” (reproduced from [4]

referring to [6] p.11), i.e. this perspective admits an explanatory physicalism, and in the follow-

ing we will try to precisely define what is understood here as explanatory.

Emergence in complex systems
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In the above emergentist definition one should distinguish between theoretical prediction of

the features of an emergent property E and its inductive prediction [5]. Inductive prediction

occurs if, every time that the property E is observed, a particular ensemble of microstates M
(see Fig 1) is also observed. The fact that this situation can be considered a phenomenological

law justifies us to say that understanding what comprises the interrelations of the components

of the system and the influence of the environment that leads to the observation of M, already

constitutes an explanation of E. Still we may argue that this explanation is incomplete if we do

not understand how visiting M translates into the appearance of E. Or if we are not able to the-
oretically predict the emergence of E when we operate over the system to make it run into M,

formally through simulations or, in the natural side, decoding the formalism with experiments

such that we intend to control the system to generate M, and hence to observe E. But we will

defend here that it is the first step that should be tackled in the search for an explanatory

framework of E under the scientific method.

Fig 1. Scheme of the epistemological approximation of an observer in the analysis of emergent properties. Research starts with the

observation of an emergent macroscopic property E and the associated ensemble of microstates M, both characterized through

measurements. These observations are then encoded to build a formal framework. In this work, we are interested in finding a minimal
epistemological map between the formal macroscopic and microscopic descriptions (red arrows). This map consists of finding a microscopic

compact description of the ensemble, which is achieved through the identification of microscopic constraints in the dynamics of the system,

in which case we will say that the macroscopic property is traceable. This is a necessary a priori step before a model is built (box modelling)

that will allow the researcher to address other questions (see questions marks) such as supervenience of upper and lower level constituents or

how to decode the formal framework under the scientific method through experiments. Interestingly, although we focus in a very specific

epistemological process, and we do not explicitly address questions related with modelling or the ontology of emergent properties, the

analysis of microscopic constraints sheds light over these questions.

https://doi.org/10.1371/journal.pone.0206489.g001
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Following this attitude, we wonder which are the properties that a complex system (and, in

particular, those exhibiting emergent behaviours) may have for being more or less accessible

to our knowledge by applying the scientific method, and we address this question by focusing

on the analysis of the encoded description of M. In this sense, we align with the proposal of de

Haan [7], who highlights the necessity of a general epistemological framework in which emer-

gence can be addressed, and we need to incorporate in this framework arguments to determine

what should be understood as epistemologically accessible.

An interesting condition for epistemological accessibility was proposed by Bedau when he

coined the term weak emergence for those emergent processes that are epistemologically acces-

sible only by simulation [8]. The idea is that a simulation would demonstrate the supervenience
of upper level properties from lower level constituents, even if the mechanistic process leading

to the observed pattern is not completely understood, i.e. it is not possible to compress the sim-

ulation into a compact set of rules explaining how the outcome is determined. Therefore, it

provides an objective definition of emergence based on computational incompressibility, that

has been explored by different models such as cellular automata [9, 10] or genetic algorithms

[11], approximations that were later called computational emergence [12].

Nevertheless, Bedau also pointed out that if it is not possible from the simulations to recover

regularities that may lead us to describe the system under compact laws, the above computa-

tional approximations should be understood as non-epistemic, hence being useless in deci-

phering the principles governing the emergence of a property [8]. Furthermore, Huneman

rightly emphasized that this is an important question to understand the relationship between

computational models and processes observed in nature [13] and, for those computational

models depicting regularities in their global behaviour, coined the term robustly emergent
models.

There is a last notion of emergence we would like to discuss that has been considered fun-

damental –as opposed to epistemological–, which is called strong emergence [14]. In physics it

is frequently assumed that knowing the positions and velocities of particles is sufficient to

determine the pairwise interactions. This assumption is frequently found in physics-inspired

models of collective behaviour, where individual motion results from averaging the pairwise

responses to each neighbour. Bar-Yam reasoned, however, that this assertion would not hold if

the system is embedded in responsive media –such as the motions of impurities embedded in

a solid– or in any process where global optimization (instead of local) is involved. In this way,

if there is a constraint in the system acting on every component simultaneously and it is strong

enough –i.e. a strong global constraint– it is not possible to determine the state of the system

considering only pairwise interactions. In a sense, the parts are determined downwards from

the state of the whole, with consciousness being a paradigmatic example suggested for strong

emergence [15].

In this paper, we investigate which are the conditions that a natural system depicting an

emergent property may possess to be compatible with the notion of robust emergence. To

address this task, we will shift the attention from computational models to focus on the analy-

sis of experimental data (see Fig 1). We will follow the view in which emergence is considered

a “relation between descriptions of models of natural systems and not between properties of

an objective reality in itself” [16] although, as we will see immediately, we will not renounce to

talk about ontology. In particular, we aim to understand the relation between macroscopic

descriptions of emergent behaviours and their microscopic counterparts, a map similar to the

one proposed by Kim [5]. This map has been criticized by Mitchell saying that it is static, and

that it cannot account for the dynamical nature of systems depicting emergent behaviours

[17]. But here we show that the ability to find what we will call a compact description of the

microstates’ ensemble depends indeed on the dynamical features of the system and, in
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particular, on how the components are entangled through internal and external constraints. In

this way, the minimal explanation we look for resides in the description of the microstates’

constraints, and the epistemological accessibility will be related with our ability to find and

compress such a description. Our strategy starts from experimentally characterized micro-

scopic states associated to a macroscopic emergent observation, and investigates which kind of

regularities found in these microstates are more difficult to compress and why. We believe that

this is a necessary a priori step for any approach aiming to model the observed process, and

thus scientifically sound notions of emergence should focus first on this process.

An immediate risk in this endeavour is that we must select a framework to work with and,

by doing this, any result may depend on the framework selected. To circumvent this difficulty,

we will apply constructive logic, which is both predicative and intuitionistic [18]. Since we aim

to investigate the concept of emergence within a scientific setting, we will focus on how formal

models are built starting from experimental measurements –that are considered basic charac-

teristics– following a purely constructive attittude. This will allow us to monitor any loss of

information [18], which we will see is particularly important to understand the difficulties in

the formalization of emergence. In particular, the analysis of different synthetic examples with

the rather limited repertoire of logical operations considered, will allow us to establish fair

comparisons between systems, and to investigate further the ontological origins of these

difficulties.

The article is articulated as follows. In Methods we introduce the formalism. We provide a

careful definition of the system, and then introduce the different mathematical tools needed.

Then we describe our epistemological approximation to the problem, explaining how a num-

ber of key concepts such as constraint or model should be understood within this framework.

Then we explain the general procedure followed to analyse the systems, in which logical dis-

junction has a prominent role.

In Results, we analyse synthetic examples of 3-bit systems, to illustrate how the number and

scope of the constraints hinder our ability to describe the systems. We next discuss the limita-

tions of our approach, and how it is possible to elucidate which is the complexity of the con-

straints underlying the system under analysis despite these limitations, through the active

intervention of the observer on the system. This procedure will lead us to propose a definition

of emergence strength that we believe reconciles different conceptions of emergence found in

the literature.

Methods

Main definitions and operations

System definition. We start by proposing a glossary of terms concerning the system defi-

nition, some of them close to those proposed by Ryan in [19]. We will call a set of basic quanti-

ties associated with a given entity an (object of) observation oi. Each of these quantities is a

function f of the Cartesian product of a finite collection of sets –at least one of which is deter-

mined by experimental measurement– into real numbers R, i.e. f : A� B� :::� P! R.

The non-measurable sets may refer to a set of measurement units (e.g. grams, meters), to a

set of reference frameworks, or to any other set necessary to determine the final quantity. For

simplicity, we will consider that any variation in magnitude is a consequence of a variation in

the outcome of a measurement and thus, in the following, we will refer to measurements when

the quantities describing objects of observation are discussed.

Hence, a system is characterized by a collection of M quantitative and/or qualitative (i.e.

binary) magnitudes X = {xk, k = 1, .., M}. Given that we are interested in complex systems, we

will consider that the system consists of a large number of entities, that we denote N. We will
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call this selection of objects scope, whose size, N, implicitly determines the spatio-temporal

boundaries of the system. Determining the scope is already a difficult task for large complex

systems. Difficulties arise, on the one hand, from the identification of these entities because,

when their number is large, a complete characterization may be unfeasible. On the other hand,

it will also be difficult to define the separation between system and environment, as oftentimes

this separation cannot be achieved using strictly objective arguments [20, 21].

The selected variables X are intended to be sufficient to answer the questions addressed. For

simplicity, we start by considering an ideal scenario in which all of these variables can be quan-

tified for any entity within the system, leading to N ×M specific values. In order to discuss

how the complexity of a system can be explored using the scientific method, we will propose a

procedure to relax this assumption in section.

Every variable xk has a precision rk which is its finest interval of variation and may be deter-

mined by different means. For instance, the precision may be limited by the intrinsic measure-

ment error, which would be an ontological limitation. Another possibility arises when the

expected influence of a given variable on the system’s description is small for a given shift in

value, and a coarser discretization is then justified (a methodological choice). Calling Ik the

interval of viable values of xk, the number of possible values considered for this variable will

be zk = Ik/rk. Note that zk can be seen as the resolution of the variable xk, and thus we will call

resolution R of the system the finest description that allows us to distinguish two of its states

R = maxk({zk}) (k = 1, .., M).

This choice of variables together with the set of viable values will be called the focus F of

the knowing subject, upper-bounded by F*M × R. We finally call the set of specific values

{N, M, R} the scale. A factor multiplying any of these values represents a change in the scale of

the scope (if N is modified), or the focus (M or R). Note that, according to this definition, the

scale is an ontological attribute as determined by N, but it also depends on epistemological

ones, determined by M and R. Therefore, the breadth of the focus is heavily influenced by epis-

temological choices. Interestingly, it has been claimed that emergent behaviours (emergent

theories) are the consequence of a change in the scope [19] (and not in the focus [22]).

Measurable properties and the definition of concepts. Let us start introducing some def-

initions, most of them already provided and justified in [23], that we recover here for com-

pleteness. For the sake of simplicity we will start considering that our objects of observation o
2 O are the components of a complex system at a given time, i.e. we focus on a single micro-

state μ with N components, each of them described by M variables. For the moment, each of

these components is what we consider an object of observation. We will move later towards a

description where each object of observation is a microstate itself, becoming the whole space

of objects the observed phase space. All the definitions considered in the following for a single

microstate can be extended for other objects with a different scale.

Definition: We call a basic concept or characteristic ca ¼ x�k the specific value x�k of a vari-

able xk, out of the zk possible values, measured over an object of observation o. In this way,

if we consider two different measurements for the same entity, each of them will constitute a

different object of observation.

Definition: We call focus F the whole set of characteristics considered by the observer:

F ¼ fxlk; k ¼ 1; ::;M; l ¼ 1; ::; zkg � fca; a ¼ 1; ::; ~Mg, with ~M ¼
PM

k¼1
zk. We make

explicit here the discrete nature of the conceptual setting and the relation between resolution

and focus, which achieves a suitable description in terms of characteristics, leading to the defi-

nition of concepts. Discreteness is ultimately a consequence of the non-vanishing systematic

error associated with any measurement, and any transition into a continuous description

would be a formal abstraction made during the modelling process.

Emergence in complex systems
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Definition: We call a concept ν any non-empty finite subset of F: ν = {c1, . . ., cP}, with

P � ~M . We defined the intension of concepts. Given that a concept may contain a single char-

acteristic, ν = {c}, any characteristic can be considered a (basic) concept as well. Characteristics

are atomic concepts in the sense that, for research purposes, they are not further decomposable

into other concepts. In this sense, they constitute a basis for any other concept. The distinction

between concept and characteristic will be needed in certain circumstances, but given the sim-

plicity of the examples we discuss below, we will rarely use this distinction and refer simply to

concepts.

Logical operations. It follows from the previous definitions the operations below to build

new concepts.

Definition: (Conjunction of concepts). Let ν1 = {c1, . . ., cP} and ν2 = {d1, . . ., dQ} be two

concepts. Then, the conjunction of ν1 and ν2 is the concept

n1 ^ n2 ¼ fc1; :::; cP; d1; :::; dQg ð1Þ

The conjunction of concepts is, in turn, a concept which consists of the set of all characteris-

tics contained in concept ν1 AND ν2. Although the new concept is the union of two sets of con-

cepts, note the choice of the meet symbol ^made in [23] that we also follow here. With this

choice it is stressed that there are fewer concepts enjoying all the characteristics in the union

than concepts enjoying all the characteristics of the finite sets ν1 and ν2 separately (Silvio

Valentini, personal communication). The situation is confirmed by the choice of the empty

set as the greatest element among collections of characteristics, given that the characteristics it

contains (namely, no characteristics) are enjoyed by all concepts.

Now we would like to know the supremum of two concepts, namely the subset of concepts

U that allows us to speak of the concept ν1 OR ν2.

Definition: (Disjunction of concepts). Let ν1 = {c1, . . ., cP} and ν2 = {d1, . . ., dQ} be two

concepts. Then, the disjunction of ν1 and ν2 is the subset

U ¼ n1 _ n2 ¼ fn1; n2g ¼ ffc1; :::; cPg; fd1; :::; dQgg ð2Þ

This operation is a sensible one because we will use it to describe subsets of observations

such as {ν1, ν2}, and we would like to find a concept for this subset describing either the obser-

vation of ν1 OR the observation of ν2 OR the observation of ν1 AND ν2. Unfortunately, this

concept does not generally exist in a closed form, a fact that will be central to our investigation.

The space of concepts described so far, equipped with a join and a meet for every finite sub-

set, fulfils the properties of a distributive lattice [24] (moreover, it is a topology [25], although

we will not exploit this fact) and hence we can get some more intuition about disjunction

through the following property.

(Distributivity of the disjunction of concepts). Let ν1 = {c1, . . ., cP, b1, . . ., bL} and

ν2 = {d1, . . ., dQ, b1, . . ., bL} be two concepts. Then the subset of concepts U = ν1 _ ν2 can be

expressed as

U ¼ n1 _ n2 ¼ fb1; :::; bLg ^ ½fc1; :::; cPg _ fd1; :::; dQg�: ð3Þ

Therefore, disjunction of concepts leads to a subset of concepts containing the set of all

characteristics in common to both concepts, plus those that are observed either in one or the

other. As we already noted, we are unable to build a concept, let us say q, in terms of conjunc-

tions of concepts to talk about U, but it is clear that the more concepts ν1 and ν2 have in com-

mon the closer we are to finding such a concept. Other basic properties of conjunction and
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disjunction that will be used are the following [24]:

^ _

Commutativity n1 ^ n2 ¼ n2 ^ n1 n1 _ n2 ¼ n2 _ n1

Associativity ðn1 ^ n2Þ ^ n3 ¼ n1 ^ ðn2 ^ n3Þ ðn1 _ n2Þ _ n3 ¼ n1 _ ðn2 _ n3Þ

Unit laws n1 ^ true ¼ n1 n1 _ false ¼ n1

Idempotence n1 ^ n1 ¼ n1 n1 _ n1 ¼ n1

Absorption n1 ^ ðn1 _ n2Þ ¼ n1 n1 _ ðn1 ^ n2Þ ¼ n1

The space of objects of observation. We have introduced a formal conceptual apparatus

that a knowledge subject may use to build from experimental measurements a model, but we

still do not know what a model means. Before getting into this discussion, we should establish

a map between the formal side in which we developed our framework and the concrete space,

in which the objects of observation live, i.e. the objects that constitute the physical world. In

particular, we are interested in understanding how the set of concepts we considered, which

determines a partition of the focus, will induce, in turn, a partition in the set of objects of

observation. In other words, we aim to determine a constitutive relationship between any sin-

gle characteristic belonging to the focus F and the set of objects O. Understanding this map

will allow us to work in the formal space while ignoring the concrete space, but being certain

that any new concept arising in the formal side has a correspondence in the concrete side. The

following constitutive relationship will express how the objects become cognitively significant

by means of the characteristics measured and, in turn, by the concepts we build from them

[23].

Definition: (Constitution relation). Let F be the focus over a set O of objects. Given

o 2 O and ν 2 F, we introduce a binary relation,⊩, that we call constitution relation, such

that by o⊩ ν we mean that ν is one of the concepts constituting o. With the constitution

relation we determine how the objects of observation are expressed via the conceptual appara-

tus of the knowing subject. In addition, we would like to know which objects are constituted

by a given concept.

Definition: (Extension of a concept). Let ν 2 F be a concept. Then, the extension Ext of ν
is the subset of objects of O constituted by ν, that is

ExtðnÞ ¼ fo 2 O j o ⊩ ng ð4Þ

We note here that an immediate consequence of Eq 4 is that any object of observation has

necessarily associated with it a concept, i.e. it is just cognitively accessible by means of the con-

ceptual apparatus of the knowing subject. This assertion, if accepted in general, leads to a Kant-

ian epistemological positioning [25]. In our case, it is a consequence of the fact that our objects

of observation are built from measurements of a reproducible experimental setting, and hence

it is true by construction. Nevertheless, the opposite is not true, as we may deal with concepts

for which no object is observed, i.e. Ext(ν) = ;. Such a situation would arise for example if we

have a priori expectations of the viable values of the system. For instance, we know that a

group of birds can fly in any direction even if we systematically observe them flying in a single

direction. From the point of view of the scientific method, concepts built from a priori expecta-

tions are very important, as they may be used to propose null hypotheses which, in general,

can be formulated as H0: "ν observed". It is when we reject the hypothesis through experiments

that we acquire a scientific knowledge of the process analysed, i.e. that ν is not observed with

some statistical significance.
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Finally, we aim to know what is the extension of a subset U of concepts U = {{ν1}, . . ., {νL}}.
Lemma: Let U be a subset of the set F of concepts. Then, the extension of U is defined by

setting

ExtðUÞ ¼
[

n2U

ExtðnÞ ð5Þ

Hence, if we consider two concepts ν1 and ν2, we should not confuse the extension of a

concept built by conjunction of concepts ν = ν1 ^ ν2 = {c1, . . ., cP} ^ {d1, . . ., dQ} = {c1, . . ., cP,

d1, . . ., dQ} with the extension of a subset of concepts built by disjunction U = {ν1, ν2} = ν1 _

ν2 = {{c1, . . ., cP}, {d1, . . ., dQ}}. In the former case, we look for objects containing both concepts

and, thus, the number of these objects is smaller than or equal to the number of objects

described by ν1 or ν2, Ext(ν) = Ext(ν1 ^ ν2) = Ext(ν1) \ Ext(ν2). On the other hand, the subset

U extends over objects containing any of the concepts, since its extension is the union of the

extension of both concepts, as shown in Eq 5.

Epistemological approximation

Microscopic and macroscopic descriptions. Following the definitions introduced, we

would like now to differentiate between two types of variables providing a description of the

system at different scales: microscopic and macroscopic variables. Note that by microscopic

we do not mean “atomistic” but instead a significantly shorter spatio-temporal scale of obser-

vation of the system. A particular feature of the interplay between both scales is that, when a

macroscopic property is observed during the dynamical evolution of a system, even if the

microscopic variables are continuously changing, the macroscopic variable’s values remain the

same.

In the following, we will call microstate μ a vector containing, at a given time, the values of

a set of variables {xk} that fully determines the state of the microscopic objects, i.e. m ¼ fx�kg,
where x�k stands for a particular value of the variable xk. Therefore, the basic objects of observa-

tion we are considering now are the microstates o� μ. When a coarse-graining of the micro-

states at the spatial, temporal, or spatiotemporal dimensions is performed, it may be possible

to determine macroscopic variables yk describing the state of the system at the new (coarser)

scale. We will call macrostates the objects described at the macro scale o� ξ. In some cases,

the macroscopic variables yk can be obtained by applying a surjective map f over the micro-

scopic variables f(xk)!yk. For instance, if we deal with an incomplete (statistical) microscopic

description of an ensemble, P(μ), we can obtain a coarse determination of a macroscopic vari-

able yk averaging the correspondent microscopic variable xk, weighted by the statistical proba-

bility of the microstates over the ensemble hxk(μ)P(μ)i. Nevertheless, in many other situations

it is not possible to find such a map, and we argue that this fact underlies many problems sur-

rounding the study of emergent properties: we observe a macroscopic property such as the col-

lective behaviour of many interacting elements, and it does not seem possible to explain it

from lower levels of description (for instance, from the properties of the entities themselves).

It is important to underline that macrostate and microstate definitions are relative to the

scale of observation and they may change if we move from one scale of description to another.

Consider a system described within a certain temporal scale by a set of microstates {μi} which

are associated with the observation of a single macrostate ξ. Assume now that the system

evolves along a sufficiently long path such that we observe different macrostates and we store

T snapshots of these dynamics, leading to an ensemble of macrostates fxug
T
u¼1

. If at this larger

scale new properties arise, we may be interested in considering that each of these macrostates

is now a microstate m̂ for a new system with a larger scope and lower resolution xu ! m̂i.
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Given that the scope of a macrostate will always be larger than that of a microstate (Nξ� Nμ),
whereas the opposite is true for the resolution (Rξ� Rμ), in this exercise we have increased the

scope and reduced the resolution. This is the reason why, the larger the scale, the more difficult

it is to build a bottom-up explanatory framework.

We should also note that this change in scale requires an effort to reduce the system

description, but this kind of reduction has been performed from the very first step: for the defi-

nition of scope, we have neglected entities; for the definition of focus, we have neglected vari-

ables and probably restricted their viable values assuming a lower resolution. Furthermore,

any map between microstates and macrostates again considers a reduction in the information

provided by the microstates. In general, for both very broad or very detailed questions the

technical complexity increases and a reduction in description is unavoidable, and it is impor-

tant to remark that this exercise is not linked with a naive reductionist positioning, in which it

is accepted that any macroscopic description is a simple extrapolation of the properties of the

microscopic description [26]. Instead, we accept that in complex systems there are discontinui-

ties between the different levels of description and that, for each new level, new properties may

arise. We are interested here in investigating when a microscopic description is a minimal

representation of an emergent macroscopic observation.

Traceability, compact descriptions and models. Given the above considerations, we pro-

pose two formal definitions that will be helpful for understanding our rationale behind the fur-

ther development of the paper. Before getting into the first definition, we should clarify what is

understood as constraints of the system, which are considered here simply as restrictions in

the viable values of the variables we handle [27]. Any system is constrained to some extent. But

there are some constraints that belong to the definition of the system itself, that we will call

intrinsic, and others that depend on particular conditions, that we will call facultative. Con-

sider the structural differences between a protein and a heteropolymer whose sequence is the

result of random shuffling of the protein sequence. Both chains of amino acids have the same

number of intrinsic constraints (those derived from the existence of peptidic bonds), but a pro-

tein structure requires three additional constraint levels in the interactions between its amino

acids that allow the polymer to behave as a protein: the first is needed for it to be kinetically

foldable in a biologically relevant time, the second for making the fold thermodynamically sta-

ble under physiological conditions, and the third to perform its specific function (metal-bind-

ing, phosphorilation, etc.). Both chains have the same amino acids but evolution has selected

for a specific order in the sequence that generates the constraints needed for the emergent

property (the protein function) to arise. Quantitatively, the probability that these constraints

should appear by chance is quite low: the number of possible heteropolymers of length N, con-

sidering an alphabet of 20 amino acids, is 20N and, as a reference, the number of protein struc-

tures (of any length) deposited to date in the Protein Data Bank (although far from being

complete) is only*1.2 × 105 (www.pdb.org).

Calling {μE} the set of microstates visited when an emergent behaviour is observed, {μNE}

the set of microstates not visited, and O the whole phase space, we expect that #(O)� #({μNE})

� # ({μE}); where #({�}) is the cardinality of the set {�}, i.e. the number of elements it contains.

Therefore, we expect the volume of the region of the phase space where an emergent property

arises to be much smaller than the whole phase space. This is probably why unpredictability or

surprise are attributes frequently used to describe emergent properties.

Let us now define what we consider a macroscopic property, whose identification is typi-

cally the starting point of any research.

Definition: (Target macroscopic property). We will say that an observed macroscopic

property is a target (of scientific research) if it is only observed when certain microscopic

facultative constraints are present. With this definition we state a minimal condition for
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considering that a macroscopic property is susceptible of being analysed through the scientific

method, an assumption that also applies when an emergent property is interrogated. There-

fore, although it is an epistemological condition, it implies an ontological assumption about

emergent properties, namely that these are the consequence of a microscopic behaviour run-

ning under facultative constraints.

Hence, we consider situations in which the phase space of the system O is restricted to a

smaller observed region OO� O, and we say that there exists a (perhaps novel) macroscopic

concept ĉ such that Extð̂cÞ ¼ O
O

. This fact motivates the exploration of this region both in

terms of macroscopic fĉg and microscopic {c} concepts (see Fig 1). We now introduce a condi-

tion that allows us to consider that a macroscopic description is in correspondence with a

microscopic description.

Definition: (Traceability). Given a target macroscopic property ĉ and the observed

phase space OO associated with that property, i.e. Extð̂cÞ ¼ O
O

, we will say that the macro-

scopic description obtained is traceable if we find an appropriate function or algorithm

applied to microscopic properties f: {c}!q such that the new concept q derived compactly
describes the ensemble of microstates, i.e. ExtðqÞ ¼ Extð̂cÞ ¼ O

O
. This definition paves the

way for quantifying the correspondence between both descriptions within the proposed frame-

work. Note it does not mean that we should be able to thoroughly explain the macroscopic

properties from the microscopic properties. It is a weaker condition that only requires estab-

lishing a correspondence between microscopic and macroscopic variables describing the same

region of the observed phase space OO. In Fig 1 we make explicit this distinction showing how

traceability appears as a relation between representations (double red arrows), while investigat-

ing causal relationships requires us to build models from the starting descriptions and to per-

form experiments (white arrow to modelling box). Therefore, traceability can be seen as a

rather minimal epistemological condition that allows us to talk about emergent properties cir-

cumventing any discontinuity between both descriptions.

Let us think further about the existence of concepts q in the context of complex systems.

After identifying a set of microstates μ visited when an emergent property is observed, we may

be able to characterize this set as described above, through a set of concepts {ei / Ext(ei) = μi,
8i}. Given the intrinsic dynamical nature of these systems, a natural starting point in the search

for a formal description will be given by q = e1 _ . . . _ eL, L being the number of microstates.

Note, however, that the concept q simply presents the microstates but it does not provide any

insight into the mechanistic processes underlying the observation of these microstates and no

others. In the remainder of the article, we will show that to provide such mechanistic under-

standing it is necessary for q to constitute a description of the constraints of the system. Fur-

thermore, the chances of building a mechanistic model will be related with our ability to build

a compact description.

Definition: (Compact description) We say that a set of distinguishable microstates {μ},

namely a set in which every microstate μi is unambiguously described by a concept ei 2 F, F
being the microscopic focus, is compactly described by a concept q, if Ext(q) = {μ} and it

irreversibly describes the constraints existing in the system. By irreversibility it is meant

here that, even if q is analytically derived from the starting concepts ei and it is still a definition

of the system, and thus Ext(q) = Ext({e}), we lose information in the derivation in such a way

that it is impossible to reverse the operations and retrieve back the original states. To recover

the full description of the system it will be needed to create a model.

Definition: (Model) A computable function or algorithm is a model C if, given a com-

pact description q of a set of microstates {μ}, it interprets the constraints encoded in q and

generates the description of the microstates from which the compact description was
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derived, i.e.C(q) = {e}. In summary, we are interested in investigating the traceability of

complex systems through compact descriptions describing the constraints of the system,

which may allow us to build mechanistic models to test hypotheses about the accuracy of the

description found. Note that, if the description of the constraints is incomplete or incorrect, a

model will generate a set of microstates that would not perfectly match the observed micro-

states (if it is able to match them at all), a fact that will be exploited in our proposal to quantify

emergence.

The process we describe in the following is similar in spirit to Rosen’s attitude when he said

that, in the modelling process, instead of throwing away the organization and keeping the mat-

ter (a compositional physicalism) one should throw away the matter and keep the organization

(see Chap 5E in [28]). While looking for constraints we shed light on the entailment between

the components of the system. Still, to prove that the constraints found correspond with the

observed microscopic process, we should use a generative model to show that the original

microstates are recovered. The condition of irreversibility tries to avoid an impredicative defi-

nition of the system’s constraints: we aim to avoid any definition of the system’s constraints

that consists of the mere presentation of the system itself.

Results

Identification of constraints: Focusing on disjunction

As we anticipated, when an emergent property is observed the probability distribution of the

values of one or several variables depart from the distribution observed when the system is free

of constraints, thus losing ergodicity [29] (p. 186). Therefore, the existence of facultative exter-

nal or internal constraints limit the behaviour of the system and, as we will attempt to clarify, a

necessary condition to determine a microscopic property associated to every microstate visited

requires the determination of the existing constraints. Indeed, it has been claimed that the

reduction in the degrees of freedom of the system –a phenomenon for which it has been

coined the term dissolvence– relies at the basis of the formation of complex emergent struc-

tures [30]. We will show here that the nature of the different constraints acting on the system

determine its epistemological accessibility, and hence our ability to reach a satisfactory expla-

nation of emergent behaviours.

Firstly, we show how the extension of those concepts built through binary operations over

sets of concepts can be obtained. Given a new concept α built via conjunction of two concepts,

ν1 and ν2, i.e. α = ν1 ^ ν2, its extension is Ext(α) = Ext(ν1) \ Ext(ν2). With conjunction we

reduce the scope of the description but we refine it, being therefore the basic operation needed

to build sharp descriptions of the observed objects.

Let us take as an example the description of polymers of amino-acids {oα}. Each amino-acid

is described by two quantities that we will consider basic characteristics: the position in the

sequence and its specific amino-acid identity. In our framework, an example of a concept

describing an amino-acid is νi = “cysteine in position i” which, in turn, is built by conjunction

of the characteristics “cysteine” and “i”. The whole polymer oα will be described by a concept α,

built by conjunction of a set of concepts νi, i.e α = (λ1 ^ τ2 ^ . . . ^ νN) (see Fig 2). The sequence

becomes uniquely determined with the concept α because its extension exactly maps the poly-

mer under study: Ext(λ1 ^ τ2 ^ . . . ^ νN) = Ext(α) = oα. In summary, conjunction underlies

bottom-up approximations, for which we look for sharp descriptions adding up concepts.

Let’s now consider disjunction. Given two polymer sequences α1 and α2 (see Fig 2),

described as α1 = (λ1 ^ δ2 ^ δ3 ^ ν4 ^ τ5) and α2 = (τ1 ^ λ2 ^ δ3 ^ ν4 ^ ν5), we would like to

look for a concept α12 that sharply describes both sequences and no others. Intuitively, such a

concept might be found if we can build a concept through conjunction of those concepts
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shared by both sequences. Following the example, by using Eq 3 we obtain:

a1 _ a2 ¼ ðd3 ^ n4Þ ^ ½ðl1 ^ d2 ^ t5Þ _ ðt1 ^ l2 ^ n5Þ�; ð6Þ

what it immediately highlights is that there is a candidate for a common concept describing

both sequences, α12 = δ3 ^ ν4 (see Fig 2). However, finding a concept describing common

information is a necessary but not sufficient condition, because we should also guarantee that

α12 is only found in these sequences in order to safely separate them from any other, what is

not true in general.

In which situations can be guaranteed that a concept describing a set of objects exists?

We can get some intuition with a simple example. Let’s consider two objects o1 and o2

sharply described by the concepts α1 = ν1 ^ ν2 and α2 = ν1 ^ ν3, meaning that Ext(α1) = o1

and Ext(α2) = o2. Distributivity of disjunction leads to

a1 _ a2 ¼ n1 ^ ðn2 _ n3Þ: ð7Þ

which tell us that, to separate these objects from any other, a limited number of situations,

illustrated in Fig 3, can occur:

1. Case 1. If Ext(α1)� Ext(ν2) and Ext(α2)� Ext(ν3), then, necessarily Ext(ν1) = Ext(α1 _ α2)

and α12 = ν1 constitutes a sharp description of both concepts.

2. Case 2. If Ext(α1 _ α2)� Ext(ν1) then Ext(α1) = Ext(ν2) and Ext(α2) = Ext(ν3) must hold,

what leads to define the concept α12 = ν2 _ ν3.

3. Case 3. If Ext(α1) 6¼ Ext(ν2) and Ext(α2) 6¼ Ext(ν3), and Ext(α1 _ α2)� Ext(ν1) and we can

only consider the possibility that α12 = ν1 ^ (ν2 _ ν3) to be a sharp description.

Independently of the situation found, with disjunction we are able to observe the con-

straints existing in the system. In the first two examples we can talk about the two sequences

saying that are those with ν1 in the first position (first case) or with either ν2 or ν3 in the second

position (second case), highlighting the restrictions to other values. The third example, which

is a combination of both, requires more information to be expressed.

We argue that, in complex systems, the third situation is rather the rule because variables

are interlinked through internal and external constraints. And we could expect that the larger

Fig 2. Illustration of conjunction and disjunction of concepts. Starting from the knowing subject’s conceptual

apparatus (Greek letters, left), two sequences α1 and α2 are built through conjunction of the basic concepts, being

themselves concepts (center). These sequences uniquely determine single objects, for instance protein sequences, and

thus #(Ext(αi)) = 1. Comparing both sequences we observe two common concepts (linked by dotted lines) that we

identify through binary disjunction. If these two concepts are only found at these sequences, we can say that a new

concept α12 sharply describes these sequences (right). This concept contains less basic concepts, but the extension is

larger than the original sequences, i.e. #(Ext(α12)) = 2.

https://doi.org/10.1371/journal.pone.0206489.g002
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the number of objects and properties are, the more complex the expressions are. Under some

circumstances, too complex expressions might reflect an imperfect state of knowledge that do

not allow us to find more compact descriptions of the system. To avoid this situation, we will

deal with a system in which the whole phase space is known in the next sections, and we will

show in this way that it is the number and scope of the constraints what makes the description

of the system’s constraints more or less complex.

A synthetic example: The three bits system

We are already equipped with the necessary tools to analyse a synthetic example in detail. The

toy model we consider consists of a system of three entities whose physical states are described

by a single binary variable, i.e. a system modelled with three bits. Examples of this kind of sys-

tems may be sets of genes that are expressed (silent) when the amount of the correspondent

protein is above (below) a certain threshold, species that are observed (absent) in certain envi-

ronmental sample or the attractor of a boolean network. Each measurement performed over

these entities will be considered an observation, taking a value of one or zero. Note that vari-

able distiguishability is relevant, but the order in which the information is collected is unim-

portant. The reason is that these are not time-ordered strings but rather states of a system,

and we assume that a state does not change within the scale of time needed to characterize it

through measurements.

For a system composed by three binary entities the focus is

• c1 = 0 ON at object 10; d1 = 0 OFF at object 10;

• c2 = 0 ON at object 20; d2 = 0 OFF at object 20;

• c3 = 0 ON at object 30; d3 = 0 OFF at object 30;

and, with this focus, we can potentially observe 23 = 8 microstates μk = (x1, x2, x3) (with k = 1, .., 8;

and xi = {0, 1}; see Table 1).

Each microstate is defined in terms of this focus through concepts ek (k = 1, . . ., 8) built by

conjunction of characteristics. For instance, the microstate μ7 = (1, 1, 0) is defined in terms of

the basic characteristics as e7 = c1 ^ c2 ^ d3, in turn being a concept. We can define for the

Fig 3. Illustration of disjunction of two concepts. We consider two concepts α1 and α2, sharply defined by

conjunction of red (ν1 in the Main Text) and cyan (ν2) for α1, and by conjunction of red and green (ν3) for α2. The grey

concepts denote any other colour needed to sharply determine the other αi concepts. Since these three colours suffice

to sharply describe α1 and α2, their extensions over the different objects of observation must follow one of the three

general cases shown in the figure and described in the Main Text.

https://doi.org/10.1371/journal.pone.0206489.g003
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3-bit system
N
next

� �

possible combinations of constraints involving next variables, and thus the

number of final microstates will depend on the number of constraints and on their scope, i.e.

the number of elements influenced by the constraint. In the following, we consider examples

with a different number and type of constraints, all resulting in the same number of micro-

states (four out of the eight viable states). Hence, these constraints are codified in one bit of

information, but we will see that the number of concepts needed to express these constraints

can change from system to system.

The simplest macroscopic description associated to the observed ensemble arises if we

consider a coarse graining of the microscopic properties such that there is a surjective map

between microstates and macrostates: a macroscopic variable takes the value 0ON0 if these

microstates are visited and 0OFF0 otherwise. In this way, only if there is a statistically significant

bias towards these microstates we can say that a novel target emergent macroscopic property is

observed.

Taking these considerations in mind, we aim to disentangle the microscopic constraints in

the system following the present formalism. Given that we build our conceptual setting start-

ing from the basic characteristics (obtained from measurements) and then performing binary

logical operations, we expect that the results obtained for the different systems are fairly

comparable.

System with a single constraint of scope one (S1). The rational is the same for the three

systems introduced. We consider that there is an observed macroscopic emergent observation

ĉE, and we know the microstates belonging to the associated region of the phase space {μE}.

Then, we analyze the set of microstates looking for its constraints.

The first system we consider is a system where the first bit is constrained to a fixed value

(c1), leading to the observations {μ1, μ2, μ6, μ7} that we explicitly show in Table 2.

In order to find the system’s constraints we start presenting the ensemble through disjunc-

tion of the concepts ei, which sharply describe the different microstates, and then we investi-

gate if it is possible to find a compact description. We first expand the definition of the system:

O ¼ e1 _ e2 _ e6 _ e7 ¼ ðc1 ^ c2 ^ c3Þ _ ðc1 ^ d2 ^ d3Þ _ ðc1 ^ d2 ^ c3Þ _ ðc1 ^ c2 ^ d3Þ

Table 2. 3-bit microstates of a system with a single constraint of scope one.

{μE}

μ1 = (1, 1, 1)

μ2 = (1, 0, 0)

μ6 = (1, 0, 1)

μ7 = (1, 1, 0)

https://doi.org/10.1371/journal.pone.0206489.t002

Table 1. Microstates of a 3-bit system.

Microstate

μ1 = (1, 1, 1) μ5 = (0, 1, 1)

μ2 = (1, 0, 0) μ6 = (1, 0, 1)

μ3 = (0, 1, 0) μ7 = (1, 1, 0)

μ4 = (0, 0, 1) μ8 = (0, 0, 0)

https://doi.org/10.1371/journal.pone.0206489.t001
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For clarity, we start looking for a compact description analysing the first two terms:

e1 _ e2 ¼ ðc1 ^ c2 ^ c3Þ _ ðc1 ^ d2 ^ d3Þ ¼ c1 ^ ðc1 _ d2Þ ^ ðc1 _ d3Þ

^ðc2 _ c1Þ ^ ðc2 _ d2Þ ^ ðc2 _ d3Þ

^ðc3 _ c1Þ ^ ðc3 _ d2Þ ^ ðc3 _ d3Þ

¼ c1 ^ ðc3 _ c2Þ ^ ðd2 _ d3Þ

¼ c1:

In the simplification, c1 absorbed several terms and expressions of the type (ci _ di) or

(c3 _ c2) ^ (d2 _ d3) are mutually exclusive, hence vanishing. We proceed now similarly to sim-

plify e6 _ e7:

e6 _ e7 ¼ ðc1 ^ d2 ^ c3Þ _ ðc1 ^ c2 ^ d3Þ ¼ c1 ^ ðc1 _ c2Þ ^ ðc1 _ d3Þ

^ðd2 _ c1Þ ^ ðd2 _ c2Þ ^ ðd2 _ d3Þ

^ðc3 _ c1Þ ^ ðc3 _ c2Þ ^ ðc3 _ d3Þ

¼ c1 ^ ðc2 _ c3Þ ^ ðd2 _ d3Þ

¼ c1:

Combining both expressions yields

O ¼ ev1 _ e2 _ e6 _ e7 ¼ c1

The result highlights that the system has a single constraint over the first variable, that does

not allow us to observe the value d1, keeping the other two variables free. And the cost of this

reduction is that we have irreversibly lost all the information needed to analytically recover the

original concepts describing the system: a model would be needed to interpret this constraint

and generate back these states.

To illustrate the relational rather than compositional nature of the approximation, we pro-

pose two representations that further allow us to see the interplay between the formal result

found and the concrete representation of objects (see Fig 4). The first network represents the

concrete side, where each microstate μi is linked with another μj if the same value is observed

in the same variable. The constraints determine the microstates acting on the variables, so we

should still move to the formal side to identify them. We create a second network considering

now basic concepts as nodes, linking two concepts ci or di if they extend over the same micro-

states (see Fig 4). More precisely, we link two concepts ci and cj with a directed edge if Ext(ci)
� Ext(cj), and with an undirected edge if Ext(ci)\Ext(cj) 6¼ ;. In this way, we compactly repre-

sent all the dependencies present in the system with relationships of subordination (directed

edges) cooccurrence (undirected) or exclusion (absent link) between the different values. This

representation resembles the information that we would recover if we build a network of vari-

ables from a covariance matrix: positive (negative) correlation arises when similar (dissimilar)

values are found between two objects.

From the formal network in Fig 4 it is easy to observe that one of the values of the first vari-

able, d1, is never observed, a fact that we can express with the proposition:

Extðd1Þ ¼ ;:

What this proposition simply states is that, in order to identify that a given microstate

belongs to this system, it is necessary to evaluate that the value measured at the first compo-

nent of the system is different from zero. In other words, as soon as we reject the hypothesis
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H0: "d1 is observed", we will be confident of the fact that we are dealing with a microstate con-

tained in S1. Similarly, to propose a generative model of the states, we just need to fix the first

variable to one for every state and randomly generate values for the other two variables.

System with two constraints of scope two (S2). We now select four microstates that

are the result of imposing two constraints over two pairs of variables, which leads to the set

{μ1, μ4, μ5, μ8} (see Table 3).

We look for a compact description following the same reasoning as for S1. The expanded

presentation of the system reads

O ¼ m1 _ m4 _ m5 _ m8 ¼ ðc1 ^ c2 ^ c3Þ _ ðd1 ^ d2 ^ c3Þ _ ðd1 ^ c2 ^ c3Þ _ ðd1 ^ d2 ^ d3Þ:

We start by looking for a simplified expression for μ4 _ μ5:

m4 _ m5 ¼ ðd1 ^ d2 ^ c3Þ _ ðd1 ^ c2 ^ c3Þ ¼ d1 ^ ðd1 _ c2Þ ^ ðd1 _ c3Þ

^ðd2 _ d1Þ ^ ðd2 _ c2Þ ^ ðd2 _ c3Þ

^ðc3 _ d1Þ ^ ðc3 _ c2Þ ^ c3

¼ d1 ^ c3

and the simplification is made after d1 and c3 absorbed several terms, and again neglecting

those that are trivially true by construction. Next, we would like to compress states e1 _ e8, but

this is not possible: by expanding the expressions it is possible to rearrange them, but there is

Fig 4. Representations of a three bits system with a single constraint of scope one. (Left) In the concrete network,

each node represents a microstate and it is linked with another microstate if they share the same observation for any

component, where the number of links represent the number of concepts shared. (Right) Formal network of concepts

extracted from the analysis of the microstates. Two links ci and cj are linked with a directed edge if Ext(ci)� Ext(cj) and

with an undirected link if Ext(ci) \ Ext(cj) 6¼ ;. The concepts are hierarchically ordered according to the cardinality of

their extension, i.e. the number of microstates they map. In this example, a single constraint on x1 naturally arises, as

one of its possible values maps the empty set.

https://doi.org/10.1371/journal.pone.0206489.g004

Table 3. 3-bit microstates of a system with two constraints of scope two.

{μE}

μ1 = (1, 1, 1)

μ4 = (0, 0, 1)

μ5 = (0, 1, 1)

μ8 = (0, 0, 0)

https://doi.org/10.1371/journal.pone.0206489.t003
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no reduction in the end (not shown). The reason is that, if only these states would be observed,

a global constraint should be acting on all three variables simultaneously, thus limiting their

behaviour, and it is not possible to express with this formalism such a constraint except by pre-

senting the states themselves. We will further explore this question in our last example below.

For the present example, the description of the S2 system would be:

O ¼ m1 _ m4 _ m5 _ m8 ¼ ðc1 ^ c2 ^ c3Þ _ ðd1 ^ c3Þ _ ðd1 ^ d2 ^ d3Þ

The expression achieved is an unambiguous compact description of S2, and it would be

interpreted in a model as follows (reading first the left parenthesis): either the subject observes

all three states ON (1,1,1), OR (s)he observes OFF in the first position and OFF in the third

one (0,?,1) OR all three are OFF (0,0,0). The same result would be obtained reading the expres-

sion in any other order: independently of the path followed, a decision tree representing the

constraints of the system can be established. To recover all four states we can develop a genera-

tive model applying the rules proposed and drawing random values in the positions that, when

the leaves of the decision tree are reached, remain undetermined (as it was for the second posi-

tion in (0,?,1)). Note that we have lost again information in the compact representation

achieved, although not as dramatically as in the previous example, because there are more con-

straints and they have a larger scope.

Now, looking into the concrete representation and, again following the procedure of the

previous example (see Fig 5), we observe that the disconnected components in the formal net-

work lead us to identify the constraints, that can be expressed with the propositions:

Extðc1 ^ d2Þ ¼ ;

Extðc2 ^ d3Þ ¼ ;

Extðc1 ^ d3Þ ¼ ;

It is easy to observe that one of these constraints is redundant. Given that c2 and d2 cannot

be observed simultaneously, if c1 is observed it means that c2 is also observed and thus d3

Fig 5. Representations of a three bits system with two constraints of scope two. (Left) In the concrete network, each

node represents a microstate and it is linked with another microstate if they share the same observation for any

component, where the number of links represent the number of concepts shared. (Right) Network of concepts

extracted from the analysis of the microstates. Two links ci and cj are linked with a directed edge if Ext(ci)� Ext(cj) and

with an undirected link if Ext(ci) \ Ext(cj) 6¼ ;. The concepts are hierarchically ordered according to the cardinality of

their extension, i.e. the number of microstates they map. In this example we identify the constraints observing those

links that, despite of being viable, are absent. For instance, there is no link between d3 and c2.

https://doi.org/10.1371/journal.pone.0206489.g005
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cannot be observed. And the other way around, if d3 is observed c2 will not be observed and

thus c1 cannot be observed. Therefore, the third constraint Ext(c1 ^ d3) = ;, is a consequence

of the other two, and we can just speak about the constraints of the system with two

propositions.

System with a single constraint of scope three (S3; the parity bit system). Our last

example is a set of microstates having an even number of ON bits, i.e. a single constraint

involving all three components. This system has been previously introduced by Bar-Yam as a

toy example of the particular type of emergent behaviour we introduced above called strong
emergence [14]. For this system, given that we find two random values in two randomly

selected bits, the third bit is constrained in such a way that the number of bits in the microstate

is always odd. This rule is used in the control of message transmission, where the last bit (called

the parity bit) is used to monitor the presence of errors in the chain transmitted. Note that we

are not interested in understanding the system under this engineering perspective, as it pro-

vides already a rather ad hoc explanation on how the system is built [31] and, in this work, we

assume no a priori knowledge of the underlying mechanisms generating the observation. It is

just one possible observation that will be analysed as in the previous examples. The microstates

we will consider are {μ1, μ2, μ3, μ4}, as explicitly shown in Table 4.

Again, we follow the same reasoning as in previous examples

O ¼ e1 _ e2 _ e3 _ e4 ¼ ðc1 ^ c2 ^ c3Þ _ ðc1 ^ d2 ^ d3Þ _ ðd1 ^ c2 ^ d3Þ _ ðd1 ^ d2 ^ c3Þ

We look for a compact description of e1 _ e2:

e1 _ e2 ¼ ðc1 ^ c2 ^ c3Þ _ ðc1 ^ d2 ^ d3Þ ¼ c1 ^ ðc2 _ d3Þ ^ ðc3 _ d2Þ:

Proceeding similarly with e3 and e4 yields

e3 _ e4 ¼ ðd1 ^ c2 ^ d3Þ _ ðd1 ^ d2 ^ c3Þ ¼ d1 ^ ðc2 _ c3Þ ^ ðd2 _ d3Þ;

and the description of the whole system would be

O ¼ e1 _ e2 _ e3 _ e4 ¼ ½c1 ^ ðc2 _ d3Þ ^ ðc3 _ d2Þ� _ ½d1 ^ ðc2 _ c3Þ ^ ðd2 _ d3Þ�:

The expression provides a kind of “bottom-up” description of the constraints of the system,

that would allow us again to build a decision tree to propose a model. For instance, reading the

expression from left to right we would say that if we observe ON in the first position (1,?,?)

then, either we observe (1,1,?) and then (1,1,1), or (1,0,?) and then (1,0,0). The two remaining

states would be obtained if OFF is observed in the first position. However, the expression

achieved is not a compact description. The reason is that, even if in the search for a reduced

description we absorbed a large number of terms, these were redundant, because if we expand

the expression found we exactly recover the definition of the four microstates. For instance,

Table 4. 3-bit microstates of a system with a single constraint of scope three.

{μE}

μ1 = (1, 1, 1)

μ2 = (1, 0, 0)

μ3 = (0, 1, 0)

μ4 = (0, 0, 1)

https://doi.org/10.1371/journal.pone.0206489.t004
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expanding the expression between the first square brackets we get the first two states:

c1 ^ ðc2 _ d3Þ ^ ðc3 _ d2Þ ¼ c1 ^ ððc2 ^ c3Þ _ ðd2 ^ c3Þ

¼ ðc1 ^ c2 ^ c3Þ _ ðc1 ^ d2 ^ d3Þ ¼ e1 _ e2;

and the other two are recovered from the second pair of brackets. Since a global constraint is

acting on the system, we obtain that all the possible values of the variables are entangled.

Therefore, the description of the constraint cannot be compressed, and hence it requires as

much information as the presentation of the system itself, we are somehow “walking in circles”

when we look for a description of the global constraint. We may say that we reached a more

“expressive” description of the system, because we observe the relation between the values of

the properties rather than the properties themselves but, since it is not compact, it may be also

seen as an impredicative definition of the system’s constraints: we are defining the constraints

with an expression that, rearranged, leads to the presentation of the system itself. This fact

strongly ressembles Rosen’s closure of efficient causation but, while the relational closure in

his approximation focuses on the causal relationships between the concepts, we still have no

clue about the nature of the constraints. However, it seems remarkable that global constraints

seems to induce a closure from the point of view of the relation between the concepts what, in

the jargon used by Rosen, would mean that the system is complex, as opposed to a mere com-

plicated system.

This is readily apparent when we look at the network representations (see Fig 6), because

the formal network intuitively resembles a sphere in the sense that there are no “borders” –i.e.

disconnected concepts from which propositions about the constraints can be derived by sim-

ple inspection, nor concepts mapping the empty set–. Thus, the identification of constraints is

more difficult than in the previous examples also under these representations. Indeed, it seems

possible to identify that there is a global constraint only because we already know the viable

values. Considering all eight microstates of the free-of-constraints system highlights a lower

cooccurrence of the different values of the three variables, but there will be no differences in

the final network topology we obtain. This fact would be also observed in the marginal proba-

bilities, as no bias will be observed for the free system nor for the parity bit system.

The comparison with the free system lead us to conclude again that in order to speak about

the system we need to write down all the microstates that are not observed:

Extðd1 ^ c2 ^ c3Þ ¼ ;

Extðc1 ^ d2 ^ c3Þ ¼ ;

Extðc1 ^ c2 ^ d3Þ ¼ ;

Extðd1 ^ d2 ^ d3Þ ¼ ;

which requires the same amount of information as presenting the system itself, as was pointed

out above.

We conjecture that, for systems with global constraints, it is not possible to derive a com-

pact description within this formalism. Of course, we may think that our formalism is simply

insufficient and that there may be other more sophisticated formalisms that would be able to

express the constraints in S3 under a compact description. For instance, there may be a func-

tion f which, given a description of a microstate ei, returns a new type of concepts ~c ¼ f ðeiÞ
that is able to differentiate the microstates of S3 from the rest. Let’s see this with an example.
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We can characterize the three above examples with their probability distributions:

PðmÞ ¼ dðx1; 1Þ=2nþ1 ðS1Þ

PðmÞ ¼ dðdðH12 þ 1; 1Þ;H23 þ 1Þ=2nþ1 ðS2Þ

PðmÞ ¼ dðmod2ð
P

ixiÞ; 1Þ=2nþ1 ðS3Þ

where xi is the value of the bit i, n is the number of bits, δ(a, b) is the Kronecker’s delta, Hij = H
(xi − xj − 1) is the Heaviside function and mod2(�) is the module two function. In principle,

there is no reason to think that the probability distribution of S3 is more complex than those

of S1 and S2. To say this there should be any objective reason showing, for instance, that the

use of a summation operator and a module function is more complex than applying two Heav-

iside functions.

To circumvent these issues, measures like the algorithmic information complexity, also

known as Kolmogorov complexity, have been proposed [32]. This is the spirit in which we

developed the present proposal. We believe that the fact that the formalism we are using here

has well defined limits (arising from the rather limited repertoire of operations allowed), is not

a drawback but an advantage to fairly compare different systems. Furthermore, when we reach

a limit, as it is the case for S3, we have a clear intuition of which are the ontological properties

behind our epistemological limitation, in this case the existence of a global constraint. For

instance, a desirable property of a framework should be that, if we increase the system’s size,

our ability to describe the constraints of a larger system should change according with their

number and scope. If we imagine how our examples will increase the number of microstates

when the number of components N increases, both S1 and S3 will increase as 2N−1 while S2

increases as N + 1. According to our formalism, the length of the description of the system will

change with increasing N. For instance, the number of propositions mapping the formal and

concrete state of the type Ext(c) = ; we need in order to describe the constraints in the system

remains equal to one for S1, increases as N − 1 for S2, and as 2N−1 for S3. We believe that this

finding is remarkable and resembles the problems identified by Tsallis [33] with the extensivity

of the entropy. In the following sections, we exploit it to provide a quantification of emergence

compatible with the scientific method.

Fig 6. Representations of a three bits system with one constraint of scope three. (Left) In the concrete network,

each node represents a microstate and is linked with another microstate if they share the same observation for any

component, where the number of links represent the number of concepts shared. (Right) Formal network of concepts

extracted from the analysis of the microstates. Two links ci and cj are linked with a directed edge if Ext(ci)� Ext(cj) and

with an undirected link if Ext(ci) \ Ext(cj) 6¼ ;. The graph of concepts is equivalent to the graph we would obtain for a

free system, being just observed a reduction in the number of objects mapped by each concept (from #(Ext(�)) = 4

towards #(Ext(�)) = 2). It reflects the notion that the system has “no borders”.

https://doi.org/10.1371/journal.pone.0206489.g006
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Quantification of emergence

According to the above results, the number and scope of the constraints are ontological prop-

erties that determine our epistemological ability to achieve a compact description, which we

raised as a necessary condition to delineate a model aimed at explaining an emergent macro-

scopic property. If, as is the case with the formalism we selected, these constraints are fairly

comparable among systems, then the amount of information that codifies its description

seems to be a natural way to quantify emergence. It is, however, difficult to imagine that there

exist a framework general enough to perform such quantification in real systems.

In this section we propose a series of concepts that we believe are compatible with computa-

tional modelling of complex systems, and that are likely independent of the system used and

modelling approach followed. We start by supposing that we are dealing with a model of an

emergent behaviour, and that our strategy consists of performing interventions to the system

such that variables in the model are substituted for variables free of constraints. We then

monitor what is the relative change in our ability to predict the system’s behaviour after the

intervention.

Coverage excess. Intervention is a basic strategy to link computational modelling with the

scientific method [34]. When we neglect any variable describing a system, we reduce our pre-

dictive power if the variable is constrained with others, as the latter will lose specificity and so

there will be more states of the system compatible with the remaining constraints. We can

quantify the uncertainty we generate when we lose constraints; meaning that we can relate the

causal effects a component has on the other components according to the notion of Granger

causality [35].

We illustrate the proposed method in Fig 7 by considering the 3-bit synthetic examples.

Starting from a 3-bit system, we neglect one of the variables, and then we explore which are

the 2-bit states recovered. Returning to the system with the chosen variable neglected, but

allowing it to now obtain any viable value (i.e. free of constraints), we will be able to build

from these 2-bit states a number of 3-bit states. By doing this systematically for all the variables,

we can infer what is the influence of the underlying constraints. For instance, for S1, if we

neglect the first component x1, which is the source of the constraint, we obtain all possible

states of a 2-bit system containing components x2 and x3. This is because there is a single con-

straint in the system and it was deleted, hence we can recover the whole phase space O when

we build up all the 3-bit states compatible with these 2-bit states. On the other hand, if we

neglect any of the other two components, x2 or x3, the constraint still remains in the first com-

ponent x1. Therefore, if we look for the 3-bit states compatible with these 2-bit states, we will

be constrained to come back to the original system S1. For the system S2, irrespective of the

component neglected we will reach the same 2-bit states. From them, we obtain not only the

original 3-bit states but two more, which means that we have lost one constraint every time,

but the other one is still active. For S3, irrespective of the component neglected, we obtain all

possible two bits states, and hence the whole phase space will always be recovered, meaning

that the constraint is always completely lost, thus pointing towards the existence of a global

constraint.

With these kinds of interventions we can quantify how the original system is covered in
excess when an intervention takes place. Formally, let’s call U the subset of concepts contained

in the focus F describing a set of microstates S = {μ} containing N components in the phase

space O, which we know is associated with a target macroscopic property. For simplicity, sup-

pose that each component i is fully characterized by a single variable xi. Next, remove any of

the xi variables and consider a new set of microstates S0 of a system with N − 1 components.

Let’s then denote as V(xi) the subset of concepts describing the set of microstates S00 of a system
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Fig 7. Scheme illustrating the definition of coverage excess. The scheme is divided in five columns (1-5) that we describe from left to

right. (1) The 3-bit systems under analysis in the main text are shown. If we intervene in the systems neglecting one component (2) we

will obtain a set of 2-bit states (3). For the system S1, removing x1 lead to different states than if x2 or x3 are removed, while S2 and S3

lead to the same states independently of the component removed (see Main Text for details). From the 2-bit states, we recover the

neglected component keeping it free of any constraint, which leads to a number of compatible 3-bit states (4). In the last column we
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with N components obtained by adding a new unconstrained component x0i to S0. We say that

the coverage excess X of S induced after neglecting the variable xi and introducing back the

component x0i is the quantity

XðxiÞ ¼
# ðExtðVðxiÞÞÞ � # ðExtðUÞÞ
# ðExtðFÞÞ � # ðExtðUÞÞ

¼
# ðS00Þ � # ðSÞ
# ðOÞ � # ðSÞ

ð8Þ

where the function #(�) returns the number of microstates contained in the set. This quantity

takes a value of zero when the states recovered are the same as the original ones, and it is equal

to one when the whole phase space is recovered. To consider a single value for the coverage

excess we will average the result of the intervention over all variables:

hXi ¼
1

N

X

i

XðxiÞ ð9Þ

If the system is very large an exhaustive computation may be unfeasible, and a random sam-

pling of the different components or more complex interventions such as the removal of sev-

eral variables would be needed. We indicate this average over interventions with the brackets

h�i. The examples explored for the three bits system results in hXiS1 = 1/3, hXiS2 = 1/2 and

hXiS3 = 1. The coverage excess reflects the vulnerability of the system to this intervention and,

as the effects link the interventions with the number and scope of the constraints present in

the system, it provides a mechanism to differentiate between upward and downward causation

[36]. The system S1 is very vulnerable if x1 is neglected, but it is not affected at all if any other

variable is neglected, and thus there is upward causation from the first variable to the whole

system. On the other hand, the system S3 is very vulnerable as the coverage excess is maximum

irrespective of the variable over which we intervene, thus highlighting that there is a global

constraint affecting the system downwards. We also note that these values will scale differently

with the system’s size. While for S1 hXiS1! 0 when N!1, for S3 it will remain constant and

equal to one. Finally, we consider the particular case in which we are already dealing with a

subset of microscopic concepts U such that an emergent process described by the macroscopic

concept ĉ is perfectly covered, i.e. such that ExtðUÞ ¼ ExtðĉÞ. In this case, we will say that the

Eq 9 provides the coverage excess of the emergent property ĉ, that we denote as hX̂i.

Loss of traceability and emergence strength. The sensitivity of the model when an inter-

vention over the system takes place suggests that systems with higher coverage excess will be

more difficult to analyse. This difficulty can be combined with the notion of traceability we

proposed above. If we have a perfectly traceable system, we can quantify how much traceability

we lose after intervention with the loss of traceability

U ¼ 1 � hX̂ i: ð10Þ

With this quantity, we can express those systems that are easily covered in excess have low

traceability and the other way around. Therefore, the associated macroscopic property will be

difficult to explain, from which the following definition for the emergence strength σ of the

emergent property arises naturally

s ¼ � logðUÞ: ð11Þ

We haven taken the logarithm of the traceability to represent the emergence strength as a

dissimilarity between a state of perfect knowledge of the system (complete traceability) and the

show the result for the coverage excess obtained from this procedure using Eq 8. The final value for the coverage excess of the system

will be the average among the values obtained from the different interventions.

https://doi.org/10.1371/journal.pone.0206489.g007
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state after intervention. If, after intervention, we still remain in a situation of perfect traceabil-

ity, this dissimilarity will be zero. On the other hand, if we completely lose all the information

about the system in a way that we recover an unconstrained phase space, this dissimilarity will

be infinite, thus reflecting some epistemological gap for these systems.

With these definitions we expect to reconcile different positions on whether the origin of

emergence is epistemological or ontological: even if we deal with a perfectly traceable system,

which is therefore epistemologically accessible, we can still see that there are systems that are

more inaccessible than others, and there are ontological reasons for that: the type of con-

straints involved in the system. For these systems, until perfect traceability is attained, we will

probably be tempted to say that they are epistemologically inaccessible, and that there is a

strictly ontological and not epistemological reason for that. But it is a combination of both:

there is an ontological reason why their emergence strength is so high that hinders an episte-

mologically accessible (microscopic) compact description, but this doesn’t mean that such a

description cannot be achieved at some point. Of course, we should keep in mind that achiev-

ing a compact description does not mean that we have a full mechanistic understanding of the

process: we still need to develop a model in the sense introduced here, that would interpret the

constraints and generate the microcopic phase space. If the constraints are very complex the

implementation of constraints may never be feasible. Furthermore, even if a satisfactory gener-

ative model is developed, it does not mean that we are able to generate the macroscopic emer-

gent pattern with a model. This would require a final process to decode the formal model,

sensu Rosen [28], which may further require a complex experimental setup (the decoding step

shown in Fig 1).

Given that during the process of researching an emergent property there are different steps

we could use to evaluate the accessibility of the underlying process, we propose to focus upon

the analysis of the patterns obtained from the experimental data as the starting step. This may

help to reconcile the definition of weak and strong emergent properties [14] using the emer-

gent strength: if the emergence strength is infinite we deal with a strongly emergent pattern,

whereas if the value is finite we deal with a weak emergent pattern with the associated strength

as an indicator of how difficult it is to achieve traceability. We conjecture that further difficul-

ties in computational or experimental modelling will likely go hand in hand with difficulties in

the determination of the pattern’s traceability.

Of course, we cannot discount the possibility that there exist systems which are epistemo-

logically inaccessible. This may be the case for quantum or computational systems—for which

some of the definitions of weak and strong emergence where originally proposed—but not for

many systems of scientific interest, where we believe that the situation is the one that we exam-

ined here: these systems are very large and they are under constraints large in scope. Note that

it may be argued that, with the above definitions, the emergence strength cannot be deter-

mined unless we achieve perfect traceability. However, this is only true for strongly emergent

properties because Eq 10 can be easily modified to consider an intermediate (incomplete)

model, using only the expression in Eq 9 (and not hX̂i), which will give us an estimate of the

emergence strength. We expect that, for natural systems, there is a complex structure of con-

straints with different scopes, and we will be able to progressively discover this structure –pos-

sibly from low to high scopes– and so provide an estimate at any time.

Discussion

In this article, we presented a novel approach to investigate the concept of emergence in com-

plex systems. We tackled the problem through a constructive logical system that permits the

investigation of the relationship between concepts and objects of observation [25]. In doing so,
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we focused upon a particular kind of system, which we believe are of much interest to the cur-

rent discussion of emergence. We start by supposing that we are analysing a naturally occur-

ring macroscopic emergent property, and not a purely computational one. In addition, we

neglect any vitalism, which means simply accepting explanatory physicalism; in the words of

Mitchell, what else could there be? [17].

We then assume that we are able to describe microstates of the system through experimen-

tal measurements. This implicitly assumes that we are able to differentiate the system from its

background [21] and to provide a bottom-up characterization in terms of concepts associated

with the elements that constitute the system [16], thus justifying the constructive approach.

Nevertheless, we allowed for the possibility that we have no clue about the mechanistic pro-

cesses underlying these observations, as often happens when a research program is in its

infancy.

This fact differentiates this work from other theoretical approximations aiming to under-

stand which features belong to systems exhibiting emergent properties, but that already

assume that sufficent knowledge about the system exists so as to test its computational com-

pressibility (Bedau [8]), to postulate the existence of a closure of efficient causation (Rosen,

which requires determining the causal relationships [28]) or to intervene over a system for

which we already have a mechanistic model (see for instance Hoel et al. [37]). However, this is

typically not the case when in the early stages of research, and this is why believe our proposal

may be helpful for a wide variety of scientists. Invoking a mild condition relating the macro-

scopic observation of an emergent property and the constrained walk of the system in a certain

region of the phase space, we focus on systems from which we expect to find sufficient regular-

ities in the analysis of their microstates so as to be able to build explanatory models, i.e. in

potentially robust emergent systems, which we believe are of key interest to the scientific com-

munity [13].

We showed that building a microscopic model aimed to explain an emergent macroscopic

observation requires identifying constraints in the viable values of the microscopic variables.

Interestingly, we identified concept disjunction as the basic logic operation to find constraints.

The search for similarity measures, dissimilarity measures or distances is an essential task in

Biology and Ecology [38] aiming to understand, following a top-down approach, the informa-

tion shared between the different observations. This probably explains the success of complex

networks theory and its philosophical interest, or why methods comparing objects of observa-

tion, such as protein sequence alignments like BLAST [39], are among the most cited ever in

the scientific literature [40]. In general, disjunction underlies dimensionality reduction tech-

niques such as principal components analysis [41]. From the perspective of our framework,

these are techniques aiming at obtaining a representation with the minimum number of con-

cepts whose extension explains the full variability of the microstates. In this way, we are able to

talk about the set of objects using a subset of concepts, which is essentially the task addressed

by dimensionality reduction techniques, and that we defined here with the notion of compact

description.

We applied these tools to three different ensembles of microstates of a 3-bit synthetic sys-

tem. We observed that the scope of the constraints is the main difficulty in identifying them:

the larger the scope of the constraint, the more difficult is to assess it. In particular, our method

was unable to find a compact representation when the scope of the constraint has the same

size as the system, which directly links the epistemological limitation of our framework with

an ontological property of the system. We briefly considered other approximations, and were

able to show that the number and type of constraints heavily influence the consequences that

either an increase in system size or a loss of components may have upon our ability to identify

them. This observation seems to be independent of the formalism used, and so will also be
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independent of any subjectivity induced by the formalism we chose here. Notably, we were

able to express this observation in the concrete space; thus further research would be needed

to find equivalent definitions in the formal space.

We also proposed a procedure based on the intervention of the observer on the system,

thus compatible with the scientific method, to compute the loss of information experienced

when we neglect components in the system. Given that the loss of information depends on the

type of constraints present, we can quantify how difficult it is to achieve traceability between

the microscopic and macroscopic description. The loss of traceability was then used as a quan-

tity to establish a distance between perfect traceability and our knowledge of the system after

systematic interventions, which was what we called the emergence strength.

We believe that, for the kind of systems we are interested in, the emergence strength paves

the way for us to reconcile different notions of emergence. For natural systems, we aim to

develop computational models to reproduce experimentally measured data and to then simu-

late the emergent process, and thus it is compatible with weak emergence. Nevertheless, we

propose to combine the ability to build a computational model with the identification of con-

straints from experimental data, since the identification of constraints is where we start learn-

ing about the natural process we face. In this way, we focus on disentangling the number and

scope of the constraints, whose complexity will determine its emergence strength.

We conjecture that, for systems with different types of constraints, those with smaller scope

are identified first. Accordingly, if a system has only constraints with a large scope or there is a

big gap with respect to those with smaller scope, it may be simply impossible at a certain state

of knowledge to assess them, an example of which may be our current knowledge of con-

sciousness. For these processes, the emergence strength may be so high that we would be justi-

fied in calling them strongly emergent processes. For such processes, it may be the case that

not only is it impossible to decipher the constraints, but even if the microscopic constraints are

deciphered, it may still not be possible to build an experimental setup for a model to recreate

the observed emergent pattern, given the complexity of the environment in which the system

should be embedded to reproduce such a constraint. Our definition seems to also be compati-

ble with the classification proposed by de Haan [7], as the existence of a microscopic emergent

conjugated causally affecting the macroscopic pattern (in the strongest version, consciously),

can be understood in terms of a global constraint (as he suggests in the relationship between

this type of emergence and downward causation). This is the case for living systems, where we

believe strong emergence may be pervasive.

Our findings might be criticized as saying that describing emergence in terms of constraints

provides a static description for systems that are intrinsically dynamic; an approach which

may be thought of as a kind of ontological reductionism [17]. Note, however, that constraints

may themselves be dynamic and, either their variation occurs on a longer timescale, or the

constraints dynamics is itself sufficiently constrained, e.g. periodic conditions such as day-

night or seasonal temperatures. This would also address potential criticisms regarding multiple

realizability: similar microscopic patterns can be found for systems under similar constraints

even if the particular realizations of the microstates are substantially different for each system.

Multiple examples of this can be found in the literature. For example, the evolutionary process

allow us to classify protein structures in clusters if they have global structural similarity (that

result from similar physico-chemical constraints) even if they perform different functions

[42]. Similarly, ecological patterns such as the nestedness found in ecological networks

describe complex constraints in the way in which species interact, even if they are found in dif-

ferent ecosystems, from plant-pollinators [43] to host-virus systems [44].

If patterns observed in organisms are the consequence of natural selection, and global con-

straints are acting on individuals in the selection process, natural selection itself can be thought
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of as an expression of downward causation [45]. Interestingly, adaptation takes place when the

organisms are able to predict and overcome environmental changes, and predictability is a

consequence of the amount of structured information that exists in the environment [46]. As a

corollary, the ability of organisms to modify the environmental constraints to make them

more predictable, enhances the organisms’ potential for adaptation. But, organisms share their

environment with other organisms, and thus ecological interactions are fundamental to the

adaptive process. This picture, in its stronger version, in which the influence of ecological

interactions is so important that the notion of an individual as object of selection is challenged,

becomes increasingly important in current research, particularly in the microbial world (see

for instance [47]).

To illustrate this point, consider the following example proposed in [48], in which we con-

sider one individual for which its fitness fi can be decomposed into two components, where

the first component reflects the fitness f intij of the individual as a consequence of its ecological

interactions with other species j, and the second its fitness f inti due to any other process, i.e.

fi ¼ f intij þ f
int
i . Now consider a particular example, in which two individuals belong to two dif-

ferent species, a and b, interacting mutualistically. The effect of the interaction on the fitness fi
would be positive through an increase reflected in the term f intij . Finally, think of an evolution-

ary event which becomes fixed in the population of species a affecting its fitness, fa ! f̂ a, in

such a way that the new fitness f̂ a < fa and, in particular, f̂ inta ¼ f inta but f̂ intab < f intab . This means

that the fitness of species b due to the interaction with species a will also be affected after the

evolutionary event and thus there will be a change in the selection pressure on the regions of

the genomes of both species codifying the traits needed for the interaction. Furthermore, if we

consider an extreme scenario in which f intab � f inta and f intba � f intb –that may be the case for

auxotrophs (see a synthetic ecological experiment in [49])– the relevance of these coevolving

regions in the evolutionary process would be so important that the concept of an object of

selection should be revisited [50]. In particular, it might be more appropriate to frame the evo-

lution of both species by considering them as some sort of multicellular species. In this sense,

even if the individual is still the main object of selection, it becomes entangled with an object

of selection determined on a larger scale, which is the consortia of species. Furthermore, if this

consortia acquires new functionality that make its members selectively advantageous in line

with Kim [5], we may say that a new object of selection emerges. If that were the case, the sin-

gle species’ individuals would be constrained downwards by their fitness dependence with

respect to the consortia they belong to, and the consortia is itself influenced upwards by the

individual species. In the same way that we admit the existence of different levels of organiza-

tion of living beings that depend on a hierarchy of constraints, we should also consider the

possibility that individuals belong to different objects of selection influencing their fitness to

different degrees. In this way, the term upwards (downwards) causation would be used in this

context as the effect of constraints acting on a given level has ramifications for objects of selec-

tion on upper (lower) levels.

This perspective probably reflects the interest of modern science on mutualistic interactions

and its relation with emergent processes [4], although mutualism may not be necessary to

derive a measure of community-level fitness [51]. The determination of fitness above the indi-

vidual level may be seen as a form of self-determination that would engage with the concept of

closure of efficient causation. And in the same way that it is possible to argue that complete or

perfect closure exists for any living being, it is also possible to argue for the concept of the

object of selection to be a closed concept and reality. This is probably why it is aimed at extend-

ing the concept of closure to an ecological context [52]. A rigid definition of closure or of an
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object of selection might be an acceptable concept in an ideal thermodynamical scenario of

natural selection [53] –and thus theoretically interesting– but it may perhaps be a good ideali-

zation of the limits of biological organization, like simple cells or the whole biosphere. But

these concepts become blurred in complex ecosystems in natural environments. We believe

that there is no need to invoke any teleological principle [54]. Only in an ideal scenario in

which life evolves spontaneously following thermodynamical principles may one envisage a

teleological ideal in which biological organization maximizes any entropic or energetic princi-

ple [55], or arbitrary fitness. It can be argued that this scenario is true in general. A simple

counterexample may be found in the way in which human beings not only do not optimize

any spontaneous physico-chemical principle from which life may have emerged, but rather

generate a process that may eventually lead to extinction.

In summary, we believe that the formalism introduced here improves our ability to synthet-

ically understand complex systems. We believe that it could also be used to tackle other

challenging questions, and thus we hope that our effort will stimulate both scientific and philo-

sophical discussion. Looking for fresh formal approaches to talk about philosophical questions

is particularly important because formally shaping our philosophical knowledge is a way to

create new bridges between science and philosophy. This would be probably good news for sci-

ence, as the benefits of philosophy seem to be, for current scientists, left behind.
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