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Community-level signatures of ecological
succession in natural bacterial communities
Alberto Pascual-García 1,2✉ & Thomas Bell 1

A central goal in microbial ecology is to simplify the extraordinary biodiversity that inhabits

natural environments into ecologically coherent units. We profiled (16S rRNA sequencing)

> 700 semi-aquatic bacterial communities while measuring their functional capacity when

grown in laboratory conditions. This approach allowed us to investigate the relationship

between composition and function excluding confounding environmental factors. Simulated

data allowed us to reject the hypothesis that stochastic processes were responsible for

community assembly, suggesting that niche effects prevailed. Consistent with this idea we

identified six distinct community classes that contained samples collected from distant

locations. Structural equation models showed there was a functional signature associated

with each community class. We obtained a more mechanistic understanding of the classes

using metagenomic predictions (PiCRUST). This approach allowed us to show that the

classes contained distinct genetic repertoires reflecting community-level ecological strate-

gies. The ecological strategies resemble the classical distinction between r- and K-strategists,

suggesting that bacterial community assembly may be explained by simple ecological

mechanisms.
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The microbial communities inhabiting natural environ-
ments are unmanageably complex. It is therefore difficult
to establish causal relationships between community

composition, environmental conditions and ecosystem functions
(such as rates of biogeochemical cycles) because of the large
number of factors influencing these relationships. There is great
interest in developing methods that reduce this complexity in
order to understand whether there are predictable changes in
community composition across space and time, and whether
those differences alter microbe-associated ecosystem functioning.
The most common approach has been to search for physical (e.g.,
disturbance) and chemical (e.g., pH) features that correlate with
community structure and function. This approach has often been
successful in identifying some major differences among bacterial
communities associated with different habitats1 and some of the
edaphic correlates2. However, even if significant correlations
between environmental variables and microbial functioning are
found, we are still far from understanding the underlying biolo-
gical mechanisms explaining these relationships. For instance,
adding variables such as biomass or diversity to models in which
environmental variables are good predictors of function do not
strongly improve model predictions3, suggesting that there is a
need for variables that increase the accuracy of biological
processes4.

The development of a more mechanistic picture is hindered
for several reasons, such as difficulties in identifying the relative
role of stochastic and deterministic processes in shaping micro-
bial communities5–7, and the pervasiveness of functional
redundancy8,9 and of priority effects10. In addition, it is often
difficult to identify which functions to assess. Microbes inhabi-
tating a host sometimes have a substantial impact on host per-
formance, for example, turning a healthy into a diseased host11.
Such extreme impacts of individual taxa make it relatively simple
to infer a direct link between community composition and
function. In open, natural environments (e.g., soil, lakes, oceans),
the impact of individual taxa on ecosystem functions is often
minor and generalisations may depend on subjective choices of
which functions to measure.

An important step forward comes from manipulative experi-
ments in natural environments, which have identified variables
such as pH12, salinity8, sources of energy13, the number of spe-
cies14 and environmental complexity4 as key players in the rela-
tionship between bacterial community structure and functioning.
Improved control can be obtained by domesticating communities
surveyed from natural environments by growing them in a syn-
thetic (albeit complex) environment, and quantifying their
functioning under such controlled conditions15,16. With these
experiments, it becomes possible to directly test the hypothesis
that more similar communities have more similar functions
without the confounding influence of extrinsic environmental
conditions.

Community similarity can be assessed using a rich array of
analytic tools that identify β-diversity clusters within multivariate
data sets, such as the detection of communities in species co-
occurrences networks17 or the reduction of the dimensionality of
β-diversity similarities18. These approaches have been pervasive
in the medical microbiome literature, for example, in the search
for enterotypes—i.e., whether individuals are characterised by
diagnostic sets of species representing alternative community
states18,19 which, in this paper, we call "classes” of communities.
The existence of classes in communities sampled from different
locations may be due to variable environmental conditions that
select for different taxa, or may be explained more parsimo-
niously by stochastic processes together with strong dispersal
limitation20. Deciphering the likelihood of different ecological
mechanisms can be assessed by adopting a suitable null model,

for example, see ref. 21. Community classes arising from envir-
onmental selection would also be functionally different, whereas
we would not expect functioning to differ among community
classes created by stochastic processes.

Once classes and functional differences have been identified, it
is possible to step down into key biological processes by focusing
on the genetic repertoires of the constituent taxa22. Investigating
the dominant genes present in the different community classes
allows explanations of functional differences and the determina-
tion of ecological strategies. For example, community classes that
differ in genes related with environmental sensing, degradation of
extracellular substrates, or metabolic preferences, could be used as
hypotheses of the molecular mechanisms responsible for func-
tional differences. Therefore, the last step aims to explain how the
functional and genetic differences arise from the prevailing
environmental conditions23, and could point to the specific
environmental parameters that could be measured. This approach
solves the problem of measuring many environmental parameters
in the hope that some will be significantly associated with com-
munity structure or ecosystem functioning. Lack of any clear
functional differentiation among community classes is also
informative, and would indicate alternative community states
with redundant functions24–26. Such redundancy could arise in
the absence of environmental variability, which could also help
explain the lack of a dominant environmental axis that explains
variation in composition.

In this work, we followed the above pipeline using a large data
set consisting of >700 samples of rainwater-filled puddles (phy-
totelmata) that can form at the base of beech trees. The bacterial
communities present in the tree-holes are key players in the
decomposition of leaf litter, and therefore of great interest more
broadly for understanding decomposition in forest soils and
riparian zones. This is an ideal system to follow the above pipeline
given the relatively similar conditions found across different
locations, making it unique in terms of replicability of a natural
aquatic environment27,28, and its relatively low diversity. Indeed,
although effects caused by environmental variation on phyto-
telmata ecosystems have been investigated in meio- and macro-
faunal communities28, the influence in microbial communities is
largely unknown. Moreover, prior work has emphasised
bottom–up drivers of tree-hole diversity like nutrients29–31, but
top–down approaches that may help us understand other drivers
of microbial composition like stochastic dispersion or interactions
have received less attention28.

Previous work using this data set showed that rare taxa influ-
enced narrow functions (degradation of specific substrates),
whereas abundant taxa influenced broad functions (overall
community productivity)32. Here, we aim to illuminate the
mechanistic basis of this relationship. The large data set allow us
to study natural variation in bacterial community composition
through the top–down categorisation of communities into classes.
We then link the classes with bacterial functioning, analysing a set
of community-level functional profiles obtained from laboratory
assays of the same communities32, and investigating whether the
classes differed in their functional capacity. Instead of focusing on
each function individually, we investigate how the functional
profiles varied across the community classes. We then use
metagenomic information to understand whether similar com-
positions and functions are translated into different classes of
genetic repertoires.

We find significant differences in the genetic repertoires and
functional measurements among classes, which we interpret in
the context of changing environmental conditions. We address
whether differences in the communities are owing to the histor-
ical processes at the different geographic locations, or if they are
rather more influenced by contingent local conditions. These
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factors are often difficult to resolve26 but may both be important
owing to the high temporal variability in these systems, as
observed in compost ecosystems33. Interestingly, interpreting the
signatures found in the functional measurements and in the
genetic repertoires lead us to hypothesise the existence of
community-level ecological strategies, reflecting an ecological
succession driven by local environmental dynamics of the tree-
holes. These ecological strategies resemble the classical distinction
between r– and K–strategists described for single species34.

Results
Microbial community classes are determined by local condi-
tions. We analysed 753 bacterial communities sampled from
water-filled beech tree-holes in the southwest of the UK32 (see
Supplementary Table 1 and Supplementary Fig. 1). Communities
were grown in a medium made of beech leaves as substrate for
7 days and then their composition interrogated through 16S
rRNA sequencing (see Methods). We analysed the β-diversity of
these communities according to two different metrics: the Jensen-
Shannon divergence (DJSD)35, and a transformation of the
SparCC metric (DSparCC, see Methods36).

We found that there was a strong relationship between spatial
distances and the two β-diversity distances (Mantel test: r=
0.21; p < 10−3 for DSparCC and r= 0.19; p < 10−3 for DJSD). This
correlation was unexpected because the communities were
sequenced following cryo-preservation and subsequent growth
under laboratory conditions, so the communities did not
necessarily reflect their composition in the original environments.
To test if this trend was maintained across the different scales,
we clustered samples that were closer in space, and retrieved
the classifications found at 10 distance thresholds spanning five
orders of magnitude (from < 5m to >100 km). We used three
statistics (ANOSIM, MRPP and PERMANOVA37,38, see Meth-
ods) to test whether the β-diversity distances within clusters were
significantly smaller than those between clusters for the 10
classifications. In all cases, the three tests supported the
hypothesis that communities within locations were significantly
more similar than between locations (permutation tests, p < 10−3,
see Supplementary Fig. 2).

We studied how the statistics changed across the 10 distance
thresholds. We observed an increase in the mean community
dissimilarities within clusters (quantified with the MRPP statistics)
and a decay in the ANOSIM R statistics (Fig. 1c and d), whereas
PERMANOVA remained roughly constant across scales (Supple-
mentary Fig. 3). To interpret these trends, we analysed the
behaviour of these metrics with synthetic data in which artificial β-
diversity distances matrices were generated under different
scenarios that altered the mean and variance in β-diversity
distances within and between locations and across scales
(Supplementary Figs. 4–5). The increase in the MRPP statistics
with increasing spatial distance in the experimental data may be
indicative of an important role for dispersal limitation20. However,
the distance-decay in the ANOSIM-R statistic matched the
experimental data (Fig. 1d) only when the variance of the
simulated β-diversity distances was large (Supplementary Fig. 7
middle column, bottom). To give a sense of the implications of
this finding, 3% of the β-diversity distances between samples 100
km apart should be as high as those within 5 m of each other
(Supplementary Fig. 8, right). Such a finding either could indicate
substantial long-distance dispersal over 100 km, or alternatively
that there are similar selection pressures at some distant locations.

We explored this alternative hypothesis that similar commu-
nities found at distant locations result from similar underlying
environmental conditions. We performed unsupervised cluster-
ings with DJSD and DSparCC, revealing in both cases six distinct

community classes (Fig. 2a and b, Supplementary Figs. 9–10 and
Supplementary Table 2 for global characteristic metrics such as
diversity). The whole set of communities are dominated by
Proteobacteria, and the community classes were distinguished at
the genus level (95% sequence similarity), including a higher
presence of the genera Klebsiella and Pantoea (classes 1, red; and
class 3, pink); Paenibacillus and Sphingobioum (class 2, green);
Serratia (class 5 blue); Sphingomonas, Streptomyces and Pseudo-
monas (classes 4, yellow) and low abundant genera like
Brevundimonas and Herbaspirillum and, again, Pseudomonas
for class 6 (grey). In the following, we refer to class 1 (red) as the
reference class because it encompassed the largest number of
communities (Supplementary Table 2). We refer to the remaining
communities by their most-distinctive taxon as Paenibacillus
(class 2), Klebsiella (class 3), Streptomyces (class 4), Serratia (class
5). For class 6, we observed that although the Pseudomonas genus
was also high in other communities, classes 4 and 6 were
dominated specifically by Pseudomonas putida (Supplementary
Fig. 10), which we selected as representative of class 6. In ref. 39,
we use a network approach to identify modules of co-occurring
species that confirm the key role of the taxa selected as
representatives.

We illustrate how these classes are distributed in space by
representing the class identity of each community as a coloured
bar, alongside the site and date in which the community was
sampled (Fig. 2c). As expected from the previous analysis, some
communities belong to the same class even if they were distant in
space. This can be noted in the dendrogram of Fig. 2c, which
shows how distant sites (dendrogram) could have similar
compositions (colour, representing the classes; see also examples
in Supplementary Fig. 11). In addition, in Fig. 2c, we have
highlighted in the figure (dotted rectangles) some of the cases in
which there is a better correspondence with the date of sampling
than with the site. To test this observation, we showed that a
classification based on the date of sampling is consistently more
similar to the β-diversity classes than the site (Supplementary
Table 3). Moreover, computing the ANOSIM statistics when tree-
holes are clustered according to sampling location (Site values in
Fig. 2e) or according to the sampling date (Day and Month
values) consistently showed that the specific date (Day) is more
informative than the site. The Day was also more informative
than the Month, suggesting that seasonal environmental condi-
tions were not the main drivers of the similarities, but that they
were rather owing to daily variation in local conditions. Notably,
the value of the ANOSIM statistics when the classification
considered are the community classes, reaches the same value
than the one found at 50 m (Fig. 1c).

In summary, the classification successfully grouped commu-
nities into just six groups, with communties within classes often
separated by far >50 m. In addition, the date of sampling was
more informative than the sites. Taken together, the results
suggest that the classes capture similarities in local environmental
conditions even in tree-holes that were spatially separated by
considerable distances.

Community classes reflect different functional performances. If
environmental conditions determine compositional differences in
the communities, we expect that these differences are translated
into different community functional capacities. We investigated
this question analysing data that quantified the functional per-
formance of the communities32. The sampled communities were
cryo-preserved after sequencing, and later revived in a medium
made of beech leaves as substrate. Cells were grown for 7 days
while monitoring respiration and, after this period the following
measurements were taken: community cell counts, community
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metabolic capacity (measured as ATP concentration) and com-
munity capacity to secrete four ecologically relevant exoen-
zymes40 related with (i) uptake of carbon: xylosidase (X) and β-
glucosidase (G); (ii) carbon and nitrogen: β-chitinase (N); and
(iii) phosphate: phosphatase (P).

Visual inspection of the functional measurements shown in
Supplementary Fig. 13 indicated substantial differences in the
functional capacities among the community classes. In some
cases, communities belonging to different classes were clearly
separated, which is apparent in the histograms in Supplementary
Fig. 13. Therefore, we explored if these differences among the
community classes were significant using structural equation
models (SEM)41. Toward this end, the first step was to identify
the most likely structural model that explained how the functions
are interrelated. We found a model with an excellent fit
(RMSEA < 10−3, CI= (0–0.023), AIC= 7493 see Methods and
Supplementary Fig. 15), showing that measurements related to
uptake of nutrients were all exogenous, including ATP

production, cell yields and CO2 production (Fig. 3). In addition,
ATP production influenced yield, which in turn influenced CO2.
Among exoenzyme variables, N influenced ATP and, notably,
only X affected yield, whereas G and P influenced both ATP and
CO2.

Assuming that variables are structurally related in the same
way independently of the community, we investigated whether
the parameters of the model were significantly different for each
community class (up to six parameters per pathway, see
Methods). To address this question, we considered three
scenarios: (i) a model in which all the parameters were
constrained to be the same for all the classes; (ii) a model in
which each class had a different parameter for each pathway; (iii)
an intermediate model, in which some parameters were
constrained for some classes. Accounting for penalisations for
models with more degrees of freedom (see Methods and
Supplementary Results 2), the best model belonged to scenario
(iii) (RMSEA < 10−3, CI= (0–0.035), AIC= 6658, see Fig. 3 and
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Supplementary Table 6). This result supports the hypothesis that
the classes had differentiated functional capacities (Supplemen-
tary Table 7 and Supplementary Fig. 16).

We then explored whether distinctive pathways for each
class could be determined. Given the complexity of the SEM
models, we first ruled out the possibility that differences in
pathway coefficients were owing to the influence of other
(confounding) variables. To control for this possibility, for
each pair of endogenous–exogenous variables, we searched for
its set of confounding variables with dagitty42. Next, for each
pair of variables involved in a pathway, we performed a linear
regression including its adjustment set of confounding factors,
and an interaction term with a factor coding for the different
classes. Coefficients should be interpreted as deviations with
respect to the reference class (see Methods). The significant
interaction terms (Fig. 3d) show how the relationships among
the functional variables differed among the community
classes. For example, the analysis revealed that cell yield was
negatively influenced by β-chitinase activity for the Paeniba-
cillus class, for ATP production for the Serratia class, while
being positive related with β-glucosidase for the classes of
Klebsiella and P. putida. We therefore concluded that the
community classes had significantly different functional
capacities, which produced the different relationships we
observed in the models.

Community classes depict different genetic repertoires. To get a
more mechanistic understanding of the above results, we analysed
the genetic repertoire of each community class by performing
metagenomic predictions with PiCRUST43, and further statistical
analysis with STAMP44. The Nearest Sequence Taxon Index is
0.059, reflecting a high-quality prediction43 likely because most of
the dominant genera in this system are found in gut microbiomes
(e.g., Fig. 5 in ref. 45).

The fraction of exo-enzymatic genes belonging to Paeniba-
cillus, Streptomyces and P. putida classes was significantly larger
than the fractions found for the Klebsiella, Serratia classes and the
reference class, suggesting that the former classes are specialised
in degrading a wider array of substrates (Fig. 4).

Clustering the KO annotations into KEGG pathways (see
Methods) showed that the 6 community classes differed in their
genetic repertoires. Furthermore, these divergent genetic reper-
toires suggested different ecological adaptations, which are
summarised in Fig. 5. Consistent with PCA analysis of the
KEGG pathways (Supplementary Figs. 19–22), we divided the
classes in two groups: the reference, Klebsiella and Serratia classes
carried the genetic machinery for fast growth, whereas Paeniba-
cillus, Streptomyces and P. putida classes carried the genetic
machinery for autonomous amino-acid biosynthesis. Evidence for
fast growth in the reference, Klebsiella and Serratia classes comes
from the large fraction of genes related with genetic information
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processing (Supplementary Fig. 25), mostly related with DNA
replication such as DNA replication proteins genes, transcription
factors, mismatch repair, homologous recombination genes or
ribosome biogenesis—the latter being a good genetic predictor of
fast growth46. Second, communities from these classes also
carried a larger fraction of genes related with intake of readily
available extracellular compounds (Supplementary Fig. 26),
including ABC transporters, phosphotransferase system, or
peptidases and environmental adaptations including motility
proteins, synthesis of siderophores and the two-component
systems. Rapid replication often requires a more accurate control
of protein folding and trafficking, as the number of proteins and
mRNAs increase with increasing growth rates47. Consistent with
this hypothesis, we found a significantly inflated fraction of genes
involved in folding stability, sorting and degradation, including
chaperones and genes involved in the phosphorelay system
(Supplementary Fig. 27).

A second series of evidences pointing towards orthogonal
ecological strategies came from differences in the metabolic
pathways associated with the community classes. Serratia-
dominated class (5) had an inflated fraction of genes related to
carbohydrate degradation, including genes involved in glycolysis
and in the trycaborxylic acid (TCA) cycle (Supplementary

Fig. 28). In contrast, the Paenibacillus, Streptomyces and P.
putida classes were associated with genes involved in alternative
pathways like nitrogen/methane metabolism, and in secondary
metabolic pathways related with degradation of xenobiotics/
chlorophyl metabolism. Notably, the genes involved in the
exoenzymes that were experimentally assayed were higher in
these classes, suggesting that they were adapted to environments
with more recalcitrant nutrients (Fig. 5). In addition, Paeniba-
cillus, Streptomyces and P. putida classes had a remarkable
repertoire of genes for amino acids biosynthesis–possibly at odds
with the reference class and Klebsiella and Serratia classes, which
invested in proteases for amino acid uptake (Supplementary
Figs. 29, 30). The apparently low-glycolytic capabilities of these
communities could result in pyruvate deficiencies, which would
hindered the production of sufficient acetyl-CoA and oxaloacetate
required to activate the TCA cycle. Consistent with this
observation, we observed that these communities exhibited a
significantly larger proportion of genes related with glyoxylate
metabolism and degradation of benzoate, which may be used as
alternatives to glycolysis (Supplementary Fig. 31). Finally, we
observed that communities in the reference class and Klebsiella
and Serratia classes had a significantly larger repertoire of genes
needed to synthesise amino acids requiring pyruvate (valine,
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leucine and isoleucine), and which, according to our interpreta-
tion, they would generate through glycolysis (Supplementary
Fig. 28). By contrast, Paenibacillus, Streptomyces and P. putida
classes had a significantly larger proportion of genes used to
degrade these amino acids (Supplementary Fig. 29) and hence,
either they take these essential amino acids from the environment
or they generate them from other pathways. Consistent with this
observation, genes in these classes were enriched for glycine,
serine and threonine metabolism (Supplementary Fig. 29),
through which it is possible to obtain valine, leucine and
isoleucine, and which could provide an alternative source of
acetyl-CoA (Fig. 5).

Discussion
Our analysis of a large set of tree-hole bacterial communities
found a strong distance-decay in the similarity of the commu-
nities across several orders of magnitude. The existence of spatial
autocorrelation has previously been reported in soil and in other
environments48,12, but this study extends the findings to scales
above the short distances (<10 m) previously reported48. We
suggest that the high ANOSIM statistics we observed require
unrealistic levels of dispersal for the pattern to be explained by
stochastic processes alone (Supplementary Fig. 29), and therefore
points towards a hypothesis that similar environmental condi-
tions occur at distant locations.

We observed that the communities could be arranged into
classes, and that the classes corresponded to the site and the date
of collection, which are tightly correlated. The finding is con-
sistent with the idea that environmental conditions on a parti-
cular day strongly influenced species composition, consistent with
previous findings on macro-invertebrate tree-holes commu-
nities49. Moreover, particular classes were found in different
seasons, suggesting that factors like temperature were of sec-
ondary importance, despite results highlighting their importance
in similar systems25.

Laboratory experiments confirmed that these classes were
associated with different functional capacities, which we believe

strongly implies that the classes are ecologically meaningful
subgroups. The result was compatible with a scenario of ecolo-
gical succession in which there was a transition from commu-
nities dominated by r-strategists to K-strategists50. We suggest
that early successional stages were characterised by the Serratia
class. This class had a negative relationship between ATP and cell
yield, indicating low resource use efficiency. In addition, investing
in xylosidase had a much lower transfer into ATP production
than for the reference class, implying a preference for labile
substrates like sugar monomers. Analysis of the metagenome
revealed pathways responsible for extracellular degradation and
uptake of nutrients, and metabolic processes associated with
glycolysis. The class also had many genes associated with envir-
onmental processing, fast replication and accurate molecular
control of protein folding and trafficking. The mean Shannon
diversity of communities belonging to this class was almost the
lowest (Supplementary Table 2), which might be expected in a
rich environment dominated by a few well adapted fast growers,
consistent with the notion of r-strategists.

The next communities in the succession were the reference and
Klebsiella classes. Although still sharing some of the features of
the Serratia class, they had distinctive features such as a higher
conversion of ATP into yield. Later successional stages were
characterised by the P. putida and Streptomyces classes, exhibiting
high respiration values. These classes contained an inflated frac-
tion of genes related to oxidative phosphorylation and were able
to synthesise most amino acids. They were also associated with
secondary metabolic pathways that may be valuable in environ-
ments in which resources are low but where it is possible to
scavenge the metabolic by-products of former inhabitants. This is
particularly apparent for the P. putida class, which also had a
higher Shannon diversity, including many rare species, consistent
with communities dominated by K-strategists competing for rare
and heterogeneous resources.

Finally, the Paenibacillus class contained many of the meta-
genomic characteristics of the P. putida and Streptomyces classes.
It was the class with lowest Shannon diversity, and also a large

Class 6

Class 5

Class 4

Class 3

Class 2

Class 1

Class 6

Enzyme

Significance

Diff. mean proportions

Not significant
p-val < 0.05
p-val < 0.01

p-val < 0.001

< 0
> 0

~ 0

Chitinase
Xylosidase
Phosphatase
Glucosidase

Class 5Class 4Class 3Class 2Class 1

Fig. 4 Summary of post hoc analysis of exo-enzymatic genes predictions. The significance of differences in mean proportions of chitinase (circles),
β-xylosidase (squares), β-glucosidase (triangles) and phosphatase (diamonds) were tested across all pairwise combinations of community classes. Red
(blue) symbols denote that the class in the correspondent column has a significantly lower (higher) mean proportion of the enzyme than the class shown in
the row. The size of the symbol is larger for more significant differences. All tests are provided in Supplementary Fig. 4.
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fraction of sporulation and germination genes (Supplementary
Fig. 32). These results imply that these communities lived parti-
cularly unproductive environments. The laboratory results are
consistent with this hypothesis: this community had the largest
conversion of chitinase activity into yield, which may reflect its
ability to take advantage of the remaining nutrients such as dead
arthropod exoskeletons or fungi. Water volume is among the
main driver of fungi sporulation in this system51, which would
match our interpretation. Taken together, the results imply this
class is the last stage of the succession, where nutrients have been
depleted to low levels.

There are several environmental conditions that might be
driving succession. First, succession may be owing to nutrients
dynamics in the tree-holes. A main source of carbon is beech leaf
litter, supports meio- and macrofaunal communities52,53.
Degradation of leaf litter would be compatible with the succession
described. Following leaf fall, any imple sugars would rapidly be
used over days to weeks, whereas starch and cellulose degrade
much more slowly54. If this is the main driver of succession in
tree-holes, we would expect a strong seasonal signal, with a class
dominating in autumn. Our data do not support these observa-
tions because the month of the year was a relatively poor classifier

of the samples, and members of the classes we identified were
often from different times of year.

Second, succession may be owing to patterns of rainfall.
Rainwater can bring nitrogen, sulphate and other ions into the
tree-hole, but the pathway followed by the water (stemflow or
throughfall) will influence the final chemical compositions29,31.
For example, flushing after heavy rain can reduce phosphate
levels to a minimum30, and labile orthophosphate is expected to
increase at later successional stages31. In addition, a progressive
acidification in tree-holes that do not receive water inputs for
long periods is also expected due to nitrification29,31. Rain pulses
can therefore have rapid impacts on tree-hole conditions and may
explain the similarity of some samples collected at the same date
even at distant locations, whereas other properties of the tree-
holes like size, litter content and the modes of water collection
may preclude complete synchronisation.

We envisage a scenario in which rain events were the primary
drivers of bacterial composition, illustrated in bottom-left
corner of Fig. 5, which would be modified by tree-hole features
(e.g., volume, leaf inputs). Rain would generate pulsed resour-
ces of different type and frequency55, and tree-holes features
would determine the rate of resource attenuation56. For

Fig. 5 Scheme describing the genetic repertoires of the six community classes. Pathways from the KEGG database that were most relevant for describing
the classes are shown. We ranked the mean proportion of genes in each pathway (see Supplementary Results 3), indicated by the size of the circles
(Fig. 4). Only classes with significant pairwise post hoc comparisons are shown. P. putida (grey) and Serratia (blue) classes appear to dominate orthogonal
pathways. We therefore indicated how the pathways were influenced by the dominant community (indicated by the arrow colour). The link between the
TCA cycle and amino-acid synthesis (black arrow) is unclear. We further illustrate the substrates and hypothetical environmental conditions expected for
Serratia (rain/cold) and P. putida (dry/hot) communities. We suggest the other communities are intermediates between these two classes. The
Paenibacillus class, with a large number of sporulation and germination genes, may reflect conditions of very low nutrient availability.
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instance, large tree-holes or those with large leaf contents would
have a slower rate of succession, as resources are depleted less
rapidly. This hypothesis would explain why, on some dates, all
the tree-holes had similar compositions (recent rain or long
standing drought conditions), whereas, beyond that, the classes
are distributed across different dates and sites (owing to the
differential tempos of succession in tree-holes with different
features).

Dissolved oxygen may be a third environmental component
that influences community composition. The P. Putida classes
were associated with genes involved in aerobic respiration and
high levels of phosphate. We observed an increase in abundances
of strict aerobes, including Brevundimonas, Paucimonas and
Phyllobacterium. There was also an increase in genes related with
metabolism of nitrate, methane, degradation of benzoate (likely
associated with the presence of resines), or chlorophyl (which
indicates an increase in photo-heterotrophs). This class might
also be able to run the TCA cycle generating acetyl-CoA from
acetate, and from the degradation of valine, leucine and iso-
leucine, further complemented with glyoxylate metabolism and
the degradation of benzoate to generate oxaloacetate. Finally, the
class was found in summer and winter, and clustered in specific
areas. This makes it less likely that temperature is an important
variable, and points towards the amount of water and oxygen as
key variables. This observation could also hold for the Paeniba-
cillus class, for which long drought periods could lead to lack of
water regardless of other tree-holes features (Supplementary
Fig. 11).

We cannot rule out other site-based conditions like the type of
forest management. A study analysing this factor did not find
substantial differences in enzymatic activities despite different
community compositions57, perhaps because the low number of
samples did not bring sufficient resolution. Another possible local
influence for the composition are trophic ecological interactions,
like the prevalence of invertebrates in certain areas (e.g., mosquito
larvae)58. Insects with flying stages may also influence dispersal
among tree-holes, which might contribute to microbial commu-
nity similarity within a site59, resulting in a metacommunity
structure49.

The approach taken here provides detailed insights into the
community ecology of the bacterial communities inhabiting
rainwater pools. By identifying community classes a priori, we
were able to piece together the natural history of this envir-
onment from the perspective of the bacterial taxa. The spatial
and temporal distribution of these classes, combined with the
inferred metagenomes, indicate how environmental conditions
reflect the metabolic specialisations of the dominant members.
In this way, we were able to identify classes resembling r- vs. K-
strategists50 inhabiting tree-holes that were at different suc-
cessional stages, a distinction also apparent in gut’s micro-
biomes60. Although this is no doubt an oversimplification, in
general we find this conceptual framework is useful for
microbes34, as this ecological dichotomy may well be supported
by thermodynamic61 and protein-allocation trade-offs62, which
might also underlie other observed life history tradeoffs in
microbes (e.g., olitgotrophic vs. copiotrophic strategies,63). We
believe this approach of identifying community classes a priori,
therefore, holds great promise for reducing the complexity of
microbial community data sets64, particularly in systems where
the microbial communities have not yet been well char-
acterised. Combined with the experimental approach of grow-
ing the communities under standardised laboratory conditions,
the method holds promise for connecting the community
classes to distinctive functional properties. In these systems, the
approach we have used would generate hypotheses that could
become the focus of future experiments or more-detailed

sampling strategies, therefore forming the basis of a bottom–up
synthetic ecology that can be predictive in the wild.

Methods
Data set. We analyzed 753 bacterial communities sampled in from rainwater-filled
beech tree-holes (Fagus spp.) from different locations in the South West of United
Kingdom, see Supplementary Table 1. In total, 95% of the samples were collected
between 28 of August and 03 of December 2013, being the remaining 5% collected
in April 2014. Spatial distances between samples spanned five orders of magnitude
(from < 1m to > 100 km). Sampled communities were grown in standard
laboratory conditions using a tea of beech leaves as a substrate. After 7 days of
growth, communities were characterised by sequencing 16S rRNA amplicon
libraries from ref. 32. We considered only samples with > 10K reads, and species
with fewer than 100 reads across all samples were removed. This led to a final data
set comprising 680 samples and 618 operational taxonomic units at the 97% of 16
rRNA sequence similarity. In previous work32, four replicates of each of these
communities were revived and regrown in the same media, further supplemented
with low quantities of four substrates labelled with 4-methylumbelliferon. After
7 days, the experiments quantified the capacity of the communities to degrade
xylosidase (abbreviated X in the text, cleaves the labile substrate xylose, a monomer
prevalent in hemicellulose), of β-chitinase (N, breaks down chitin, which is the
major component of arthropod exoskeletons and fungal cell walls), β-glucosidase
(G, break down cellulose, the structural component of plants) and P (breaks down
organic monoesters for the mineralisation and acquisition of phosphorus). Cells
were also counted at the end of the experiment and CO2 dissipation quantified as a
single accumulative measure along the seven days of experiment. Full experimental
details can be found in ref. 32.

The rationale for sequencing the communities following growth in the
laboratory is that we were primarily interested in the relationship between structure
and function. Finding causal relationships between structure and function is made
possible here by ensuring that each community is placed in exactly the same
environment, as explained in ref. 32. However, the drawback is that by placing all
the communities in a standardised environment, the compositions may not reflect
their original composition. We expect community compositions to converge
following growth in the standard laboratory conditions, thus any compositional
differences that we observed are therefore likely to be conservative estimates of the
true differences in the natural communities.

Determination of classes. We computed all-against-all communities dissim-
ilarities with Jensen-Shannon divergence35, DJSD, and a transformation of the
SparCC metric36, DSparCC (see Supplementary Results 1), and then clustered the
samples following a similar approach to the one proposed in ref. 18 to identify
enterotypes. In the text, we call these clusters community classes. The method
consists of a partition around medoids (PAM) clustering for both metrics, with the
function PAM implemented in the R package CLUSTER65. This clustering requires
as input the number of output clusters desired k. We performed the clustering
considering a wide range of k values and also computing the Calinski-Harabasz
index (CH) that quantifies the quality of the classification, and selecting as optimal
classification kopt ¼ argmaxkðCHÞ, shown in Fig. 2b. Processing of data and taxa
summaries provided as Supplementary Results deposited in Zenodo (see Data
Availability) were generated with QIIME66 and Phyloseq67.

Community similarity, sampling date and location. To investigate the relation-
ship between the sampling location, the sampling date and the similarity in
composition of bacterial communities, we performed analysis of the similarities of
the communities grouping them with different criteria and testing if the similarities
within groups were significantly different than the similarities between groups,
using both DJSD and DSparCC. We considered as grouping units one automatic
spatial classification and two temporal classifications in which samples are joined in
clusters depending on whether they were collected in the same day, or in the same
month. Details for the spatial automatic classification and results for two other
definitions of sampling sites (see Supplementary Results 1). We clustered the
communities in spatial areas A of increasing sizes every order of magnitude, from
10 m2 to 100 km2, which we approximate considering spatial distances’ cutoffs of
ffiffiffiffi

A
p

metres. We then computed the ANOSIM, MRPP and PERMANOVA tests (see
refs. 37,38) for each of the resultant classifications, using the R functions ANOSIM,
MRPP and ADONIS2, respectively (available in the R package VEGAN68) and
assessing the significance with permutation tests (103 permutations). To interpret
the observed trends of these metrics we created synthetic distance matrices fol-
lowing different criteria, available in Supplementary Results 1.

Structural equation modelling. SEM41 were built and analysed with LAVAAN
(version 0.523) and visualised with SEMPLOT R package69,70. The modelling
procedure was split into different stages detailed in Supplementary Results 2. First,
a global model considering all data were investigated following several theoretical
assumptions about the relationship between the functions, until a final model was
achieved. Then, we looked for a second series of models in which it was possible to
fit a different coefficient for each of the parameters in the global model,
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constraining the data into subsets corresponding to the community classes (i.e., six
possible coefficients for each SEM pathway). Minor re-specification of the model
was performed (see Supplementary Results 2). We investigated whether altering the
constraints on the models provided better fits, and penalised the models according
to the number of degrees of freedom. The main criterion to accept a change was
that the Akaike information criterion (AIC) of the modified model was smaller
than the original model71. We verified that a several estimators were improved after
any modification, including the RMSEA, the Comparative Fit Index and the
Tucker–Lewis Index72,73.

Investigating causal relationships between endogenous and exogenous variables
within the final specified model required controlling for confounding factors. For
each pathway in the regression in the SEM model, we identified its adjustment set
with dagitty42. We then performed a linear regression of each pathway adjusted by
the confounding factors, adding a factor coding for the different classes. The
coefficients obtained from the regression were estimated with respect to the
reference class. Finally, we identified significant interaction terms between classes
and the exogenous variable under investigation in the pathway. A significant
interaction coefficient involving a given class was interpreted as a different
performance of that class with respect to the reference class, and was therefore used
to identify distinctive functional features of each class.

Metagenomic analysis. Metagenomics predictions were performed using
PiCRUST v1.1.243 and quality controls computed (Supplementary Table 8). A
subset of genes appearing at intermediate frequencies was selected (Supplementary
Fig. 18) and aggregated into KEGG pathways74. The mean proportion of genes
assigned to a specific pathway was computed across communities belonging to the
same class. Then we tested if the differences in mean proportions between classes
were statistically significant using post hoc tests with STAMP75 (see Supplementary
Results 3). To create Fig. 5 we visually inspected each post hoc test and ranked the
classes according with the number of pairwise tests in which they appeared sig-
nificantly inflated (Supplementary Figs. 23–33). We qualitatively represent this
ranking with circles of different sizes. Classes that do not appear inflated in any
pairwise test in the pathway are not represented.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Original data can be found as Supplementary Material of ref. 15. A set of processed data
used in this work and additional Supplementary Results can be found in Zenodo with the
URL: https://zenodo.org/record/3539537.

Code availability
Code used for some of the analysis presented in the manuscript was deposited in GitHub
with the URL: https://github.com/apascualgarcia/TreeHoles_descriptive.git.
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