
Theor Ecol
DOI 10.1007/s12080-016-0322-z

ORIGINAL PAPER

Effective competition determines the global stability
of model ecosystems

Antonio Ferrera2 · Alberto Pascual-Garcı́a1 · Ugo Bastolla1

Received: 13 August 2015 / Accepted: 15 November 2016
© Springer Science+Business Media Dordrecht 2016

Abstract We investigate the stability of Lotka-Volterra
(LV) models constituted by two groups of species such as
plants and animals in terms of the intragroup effective com-
petition matrix, which allows separating the equilibrium
equations of the two groups. In matrix analysis, the effec-
tive competition matrix represents the Schur complement
of the species interaction matrix. It has been previously
shown that the main eigenvalue of this effective competi-
tion matrix strongly influences the structural stability of the
model ecosystem. Here, we show that the spectral properties
of the effective competition matrix also strongly influence
the dynamical stability of the model ecosystem. In par-
ticular, a necessary condition for diagonal stability of the
full system, which guarantees global stability, is that the
effective competition matrix is diagonally stable, which
means that intergroup interactions must be weaker than
intra-group competition in appropriate units. For mutual-
istic or competitive interactions, diagonal stability of the
effective competition is a sufficient condition for global sta-
bility if the inter-group interactions are suitably correlated,
in the sense that the biomass that each species provides to
(removes from) the other group must be proportional to the
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biomass that it receives from (is removed by) it. For a non-
LV mutualistic system with saturating interactions, we show
that the diagonal stability of the corresponding LV system
close to the fixed point is a sufficient condition for global
stability.

Keywords Ecological models · Population dynamics ·
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Introduction

More than 60 years after the pioneering work by Robert
MacArthur (1955), and 40 years after the landmark paper
by Robert May (1972), the stability of model ecosystems is
still intensely debated (McCann 2000; Ives and Carpenter
2007 ). In this paper, we propose that the apparent contradic-
tion between stability and complexity in model ecosystems
can be in part reconciled by focusing on structural stabil-
ity i.e. the stability of an equilibrium point with respect to
variations in parameters.

In this paper, we consider model ecosystems that con-
sist of two groups of species that we denominate plants and
animals, characterized by intragroup competition and inter-
group interactions of predatory, competitive or mutualistic
nature. For such systems, the effective competition matrix
(Bastolla et al. 2005) allows separating the equilibrium
equations of the two groups of species and to analytically
predict their structural stability (Bastolla et al. 2005, Bas-
tolla et al. 2009, Pascual-Garcı́a and Bastolla 2017). The
effective competition represents the competition between
species in the same group that arises both from their direct
competition and from the dynamics of species in the other
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group, and is related to a previous theory by Chesson 1994).
If some species or resources of the ecosystem are unknown,
we interpret the direct competition matrix as an effective
competition matrix that takes into account the dynamics of
the unknown species. In this case, it is important to investi-
gate how the stability properties of the full system map into
the properties of the effective competition matrix. Here, we
show that there is a deep relationship between the effective
competition matrix of a single group and the global stability
of the complete system.

The paper is organized as follows. We start by discussing
the concept of global stability and its implications. A suffi-
cient condition for global stability of a Lotka-Volterra sys-
tem is that the matrix A describing ecological interactions
is diagonally stable (Goh 1977; Berman and Hershkowitz,
1983). As we discuss in the first section, this condition
means that there must be abundance units in which the inter-
action matrix is positive definite (with the sign convention
that we adopt; with the usual convention, the interaction
matrix must be negative definite). This guarantees the exis-
tence of a Lyapunov function.

In the section “Effective competition and global sta-
bility”, we discuss the relationship between the global
stability of two-group system and the diagonal stability
of the effective competition matrix C that allows sepa-
rating the equilibrium equations of the two groups. We
first show that, if the interaction matrix A is diagonally
symmetric, diagonal stability of the effective competition
matrices is a necessary and sufficient condition for diago-
nal stability of the interaction matrix A. Consequently, the
stability analysis can be performed on each sub-system,
much in the same way in which the effective compe-
tition between consumers derived from the dynamics of
resources allows analyzing global stability in MacArthur’s
theory (MacArthur 1970; Chesson 1990). If A is not
symmetric, diagonal stability of the effective competition
matrix C is a necessary condition for diagonal stability
of A, but it must be complemented with additional con-
ditions on the antisymmetric part of the interactions to
become a sufficient condition. In the “Conclusions and
perspectives” section we examine mutualistic systems. In
this case, the effective competition parameter may become
negative if the mutualistic interactions are strong with
respect to intragroup competition, implying unbounded
population growth. To avoid this unrealistic behaviour, we
have to model mutualistic interactions that saturate when
the abundances of mutualistic partners increase, as pro-
posed by Holland et al. (2002). For such a non-linear model,
we can still define linearized Lotka-Volterra equations
close to an equilibrium point. The corresponding effective
mutualistic interactions are much smaller than the interac-
tions that would be observed in the absence of saturation,

which enhances global stability. Therefore, the observation
that Lotka-Volterra mutualistic systems becomes rapidly
unstable when the number of species increases, as repeat-
edly reported in the literature (May 1974; Bascompte
et al. 2006; Allesina and Tang 2012), does not mean
by itself that mutualistic interactions destabilize model
ecosystems.

We present the conclusions in the “Conclusions and
perspectives” section . We propose that, for globally stable
interaction matrices, the question of dynamical stability has
to be substituted with the more general question of the space
of the intrinsic growth rate parameters that give raise to
feasible equilibria. This question is equivalent to structural
stability.

Global stability for a Lotka-Volterra system

We consider in most of this paper Lotka-Volterra systems
of n species, in which the growth rates of each species i in
the model ecosystem is a linear function of the abundance
of all other species, namely, the standard Lotka-Volterra
equations

dNi/dt = Ni

(
ri −

∑
k

AikNk

)
. (1)

The parameter ri is the intrinsic growth rate of species i, and
it is positive if species i is a primary producer and negative
otherwise, and Aik is the interaction matrix. Note that the
matrix A appears in the above equation with a negative sign
with respect to the usual definition i.e. the interaction matrix
A would be denoted as −A in the usual formulation. We use
this convention because in this way the interaction matrix
A and the effective competition matrix (see below) have the
same sign, and we can pass from one framework to the other
without having to change sign.

We are interested in the unique fixed point at which all
n species are present with non-zero equilibrium biomasses
N∗

i . This equilibrium is locally stable if all equilibrium
biomasses are positive, N∗

i > 0, and if all eigenvalues of
the community matrix with elements Jik = −N∗

i Aik have
negative real part. A stronger condition is global stability,
which guarantees that the coexistence fixed point is sta-
ble for an arbitrarily large perturbation of the abundances
i.e. any configuration with initial positive abundances for
all species always returns to the same fixed equilibrium,
hence no species can get extinct starting from positive abun-
dance. Goh (1977) has shown that sufficient conditions for
global stability of the coexistence fixed point are that (1)
all equilibrium biomasses are positive (feasibility) and (2)
there exists a diagonal matrix D with real and positive
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elements such that the symmetric matrix DA + AT D is
positive definite.1

Q = DA + AT D � 0 (2)

Matrices A satisfying this condition are variedly referred
in the literature as being diagonally stable or Volterra-
Lyapunov stable (VL-stable). In what follows, we will use
the former notation. A matrix M is said to be positive def-
inite if its symmetric part MS = 1

2

(
M + MT

)
has all

positive eigenvalues. Note that, if one uses the usual con-
vention for the sign of the matrix A, then diagonal stability
is equivalent to negative definiteness of the matrix DA.

The feasibility of the equilibrium depends on the intrin-
sic growth rates ri : The equilibrium is feasible if and only if
the ri are such that all equilibrium abundances are positive,
N∗

i = ∑
j A−1

ij rj > 0 ∀i. Therefore, when the intrin-
sic growth rates ri provide feasibility dynamical stability is
guaranteed as well, and the volume of this space of growth
rates can be taken as a measure of the structural stability of
the model ecosystem.

When the coexistence fixed point is not feasible and A

is diagonally stable, there will be at least one maximal sub-
set �p of p < n species such that the fixed point restricted

to these p species is feasible i.e. δi

(∑
j AijN

∗
j δj − ri

)
=

0 ∀i, where δi = 1 if i ∈ �p and 0 otherwise and N∗
i >

0, and no feasible equilibrium exists if another species is
added. Since the fixed point N∗

i δi is globally stable, the time
evolution of the system will converge to one of the maxi-
mal feasible fixed points determined by the intrinsic growth
rates, and all other species go extinct.

Diagonal stability and changes of units

Here, we show that the condition of diagonal stability is
equivalent to requiring that there are units of abundance
such that the interaction matrix is positive definite. Imag-
ine that we change the units of abundances for all species,
for instance from number of individuals to biomasses. We

1We describe here the main notation used in this paper. A matrix M

is said to be positive definite (the term Hermitian positive is more fre-
quently used in the mathematical literature), which we write as M � 0,
when its symmetric part MS ≡ 1

2

(
M + MT

)
has all positive eigen-

values, where MT is the transposed matrix. This implies that 〈x, Mx〉
is positive for all possible vectors x 	= 0, where 〈x, y〉 indicates the
scalar product. We denote by Ma ≡ 1

2

(
M − MT

)
the antisymmetric

part of matrix M . We also use the short notation M−T ≡ (
MT

)−1 ≡(
M−1

)T
. We denote by M ≡ MD−1 the matrix M multiplied by the

right times the diagonal matrix (D)−1, which we interpret as the matrix
M in the abundance units defined by D (see below).

write such a change of units as N ′
k = dk Nk (in the example,

the factor dk represents the average biomass of an individ-
ual of species k), or N ′ = DN in matrix notation, where
D is a diagonal matrix with diagonal entries d1, . . . , dk .
Under such change of units, the interaction matrix A, which
has units of inverse abundance times inverse time, changes
to Aik = Aik/dk , or A = AD−1 in matrix notation,
since in this way the dynamical Eq. 1 are left invariant:
(1/Ni)dNi/dt = (1/N ′

i )dN ′
i /dt = ri − ∑

k AikNk =
ri − ∑

k AikN
′
k . In this paper, we denote by an overline

a matrix multiplied from the right by the diagonal matrix
D−1, M = M (D)−1, which we interpret as the matrix
expressed in the units defined by D.

If we multiply both sides of Eq. 2 times D−1, we get

Q′ = D−1QD−1 = AD−1 +
(
AD−1

)T � 0. (3)

Clearly Q′ will be positive definite if and only if Q is pos-
itive definite2. Since Q′ is the symmetric part of the matrix
A = AD−1, Eq. 3 tells us that the system will be diagonally
stable if and only if there are units in which the interaction
matrix A is positive definite. In other words, the condition
of diagonal stability is invariant under changes of units, and
it is therefore the ecologically relevant condition, while the
condition that a matrix is positive definite is not invariant
under changes of units since the matrix DA may be positive
definite while A is not (see below for one example). In the
following, we will express the diagonal stability condition
in the equivalent form Eq.3 and we will interpret the matrix
A = AD−1 as the interaction matrix expressed in the new
units.

We can get another equivalent condition by multiplying
Eq. 2 both on the right and the left times D−1/2, obtaining

Q′′ = D−1/2QD−1/2 = D1/2AD−1/2 +D−1/2ATD1/2 � 0.

(4)

The matrix AD = D1/2 AD−1/2 is said to be related to
A by diagonal similarity, which preserves the eigenvalues
and is an equivalence relationship amongst matrices. The
global stability condition Eq. 2 may be equivalently stated
by saying that the system will be globally stable if and only
if A is diagonally similar to a positive definite matrix AD .

Effective competition

We now consider an ecosystem composed of two guilds
of species, which we designate as P and A (plants and

2In fact, it holds
〈
x, D−1QD−1x

〉 = 〈
(D−1x), Q(D−1x)

〉
; therefore,

Q′ is positive definite if and only if Q is such.
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animals, although we can also interpret them as two groups
of competing species of the same kind). The interaction
matrix is

A =
(

BP �P

�A BA

)
, (5)

where BP and BA are the direct competition matrices
between species in groups P and A, and �P (�A) describes
how the growth rates of species in group P (A) are affected
by the abundances of species in group A (P), with com-
ponents being negative for mutualistic interactions or pre-
dation of A over P, positive for competitive interactions or
predation of P over A, with the sign convention that we have
adopted for A. For this system, we can write down the fixed
point equations separately for species in each group as

CPN∗
P = RP,

CAN∗
A = RA, (6)

where CP and CA are the effective competition matrices,
defined as (Bastolla 2005)

CP = BP−�P (BA)−1 �A , CA = BA−�A (BP)−1 �P .

(7)

and RA and RP are the effective productivity vectors for
species in guild A and P, respectively, defined as (Bastolla
2005)

RP = rP − �P (BA)−1 rA, RA = rA − �A (BP)−1 rP .

(8)

The effective competition matrices incorporate in a sin-
gle matrix the effects of the indirect interaction between
species of the same group mediated through species in the
other group. Eq. 6 make clear that, by using effective pro-
ductivities/competitions, the two guilds can be decoupled as
if they were two isolated, purely competitive systems. We
also define matrices that act on both guilds as

B =
(

BP 0
0 BA

)
; � =

(
0 �P

�A 0

)
;

C =
(

CP 0
0 CA

)
= B − � B−1�. (9)

Effective competition and global stability

For diagonally symmetric interaction matrices,
diagonal stability of the effective competition
and of the full interaction matrix are equivalent

In matrix theory, the effective competition matrix CA corre-
sponds to the Schur complement (Horn and Johnson 1985;

Zhang 2005) of the matrix BP in the interaction matrix A

(analogously with CP). An important result of the theory of
the Schur complement is that if a matrix A partitioned like
in Eq. 5 is symmetric, then it is positive definite (thus, the
corresponding LV system is globally stable) if and only if
both BP and its Schur complement CA are positive definite
(see Horn and Johnson (1985) Theorem 7.7.6 pag.472, pag.
34 in Zhang (2005) and Boyd and Vandenberghe (2004)).

This result is directly generalized to diagonal stability.
We use the notation BP = BP (DP)−1, BA = BA (DA)−1,
�P = �P (DA)−1, �A = �A (DP)−1. We have

�A (BP)−1 �P = �A (DP)−1 DP (BP)−1 �P (DA)−1

= �A
(
BP

)−1
�P ,

so that the diagonally transformed effective competition is
equal to the effective competition of the diagonally trans-
formed matrices B and �. In general, since we will only
consider products of matrices that have homogeneous units,
the product of matrices multiplied by the right times (D)−1

will be equal to the same product of matrices, each one
multiplied by the right times (D)−1. The theorem of the
Schur complement then states that, if the matrix A is
symmetric (i.e. if the interaction matrix is diagonally sym-
metric), then it is positive definite if and only if both
B and C are positive definite i.e. if they are diagonally
stable.

If the interaction matrix A is not symmetric, then it is

positive definite if and only if its symmetric part A
S

is
positive definite. This matrix can be written as

A
S =

⎛
⎝

(
BP

)S 1
2

(
�P + �

T

A

)
1
2

(
�P + �

T

A

)T (
BA

)S

⎞
⎠ , (10)

and it is positive definite if and only if both the symmet-

ric part of BP and its Schur complement in A
S

, denoted as
SA, are such, yielding the following necessary and sufficient
condition:

A
S � 0 ↔ BP � 0 , SA = (

BA
)S

−1

4

(
�P + �

T

A

)T (
B

S

P

)−1 (
�P + �

T

A

)
� 0 (11)

This condition is necessary and sufficient for diagonal sta-
bility of the matrix A. If A is symmetric, the matrix SA

coincides with the symmetric part of the effective compe-

tition matrix
(
CA

)S
and the above condition is equivalent

to diagonal stability of the effective competition matrix.
Although this is not true in the general case, there is still
a strong relationship between the diagonal stability of the
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effective competition matrix and the diagonal stability of the
interaction matrix, as we discuss below.

Diagonal stability of the effective competition
is a necessary condition for diagonal stability
of the whole system

We now assume that the direct competition matrices BA

and BP are positive definite. The computation reported in
Appendix A proves the following condition, which, together
with BP � 0, is necessary and sufficient for positive
definiteness of the interaction matrix A:

A � 0 ↔ BP � 0, SA � 0 ↔(
CA

)S − EP
T

(
BP

S
)−1

EP � 0 (12)

EP = 1

2

[
BP

T (
BP

)−1
�P − �A

T
]

. (13)

The same result can be obtained from the necessary and suf-
ficient condition for positivity of the effective competition
matrix CA i.e.

CA � 0 ↔ SA + EP
T

(
BP

S
)−1

EP � 0 (14)

(for the proof, see Appendix B).

If the matrix A is symmetric, then BP
T = BP, �A

T =
�P and the matrix EP vanishes identically, confirming that
a symmetric interaction matrix is diagonally stable if and
only if the corresponding direct and effective competition
matrices are diagonally stable.

Since the symmetric matrix EP
T

(
BP

S
)−1

EP is clearly

positive semi-definite 3 , it is immediate to see from Eq. 12
that positivity of the effective competition matrix CA is a
necessary condition for positivity of the interaction matrix
A 4.

An equivalent and slightly more direct proof of this state-
ment may be also found in the supplementary material of
Bastolla et al. (2009). However, in the same supplementary
material, the proof of the corresponding sufficient condition
is wrong, and in fact the sufficient condition does not have
the generality stated there, as we show in the following.

Thus, necessary condition for diagonal stability of the
interaction matrix is that the effective competition matrix is

3In fact,

〈
x,EP

T
(
BP

S
)−1

EPx

〉
=

〈
(EPx),

(
BP

S
)−1

(EPx)

〉
≥ 0 by

the hypothesis that BP is positive definite.
4In fact, Eq. 12 involves a symmetric matrix, and it can be rewritten as〈
x,

(
CA

)S
x
〉
>

〈
x,EP

T
(
BP

S
)−1

EPx

〉
≥ 0.

diagonally positive. This condition implies that all eigenval-
ues of the effective competition matrix must have positive
real parts, a necessary condition that is easier to test numer-
ically5.

Sufficient conditions for diagonal stability

If EP is not zero, positivity of CA may not be sufficient
for positivity of A. Nevertheless, we can obtain a sufficient
condition by using additional degrees of freedom of the
diagonal matrix D, but we have to take care that C and B

remain positive definite. The simplest way to impose these
conditions consists in using the diagonal matrix D′ = d2D,
with d constant in each block, dii = dA if i ∈ A and
dii = dP if i ∈ P, and D such that the four competi-
tion matrices BA, BP, CA and CP are positive definite. With
the above choice, the matrix d commutes with the competi-
tion matrices and it does not modify them. However, d does
modify the interguild interaction terms �, and it can be used
to make them more symmetric, thus reducing EP. Note that
the conditions obtained in this way are only sufficient, since
they only exploit one out of n − 1 degrees of freedom of the
diagonal matrix D′. If they fail, it is still possible that a more
general sufficient condition is found with d not constant in
each block.

We denote the new interaction matrix as A ≡ Ad−2,
where the double overline indicates that the matrix is
expressed in different units from those used for CA and CP.
This matrix is positive definite if and only if the matrix A(z)

is such, with z = dP/dA and

A(z) = dAd−1 =
(

BP z�P
1
z
�A BA

)
. (15)

Two species

For the simple example of two groups constituted by one
species each, BA, BP, �P and �A are scalar quantities and
DA = DP = 1. In this case, positivity of the effective
competition CA = BA − �A (BP)−1 �P > 0 is not suffi-
cient for positivity definiteness of A. If �A and �P have the
same sign (competitive or mutualistic interactions) and we
choose z ≡ dP/dA = √

�A/�P the matrix A(z) becomes
symmetric, and it is positive definite if and only if its deter-
minant is positive i.e. if CA > 0. Instead, if �A and �P have

5In fact, in the complex field the condition of positive definiteness
can be written as x∗(M + MT )x > 0∀x 	= 0, where x∗ denotes the
conjugate transpose of x. In particular, if x is a right eigenvector with
eigenvalue λ, it holds Mx = λxx∗M = λ∗x∗, thus the above condition
implies that (λ+λ∗)(x∗x) > 0 and (λ+λ∗) > 0 since (x∗x) is positive
by definition i.e. all eigenvalues of M must have positive real part.
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different sign (predatory interactions), the choice z =√|�A/�P| cancels the off-diagonal elements of the sym-
metric part of A(z), so that BA > 0 and BP > 0 are
necessary and sufficient both for the positivity of the effec-
tive competition and for the diagonal stability of A. This
proves that for two species systems the diagonal stability of
the effective competition matrix is a necessary and sufficient
condition for the diagonal stability of the full interaction
matrix, which is related to the known result that for two
species local stability implies global stability (Goh 1977).

Many species: off-diagonal matrix

We can follow a similar procedure for the general case
where there is more than one species in each guild. We
assume that BP � 0. If SA defined in Eq. 12 is positive
definite then the system is globally stable. Alternatively, if
there is at least one eigenvector v0 such that SAv0 = λv0

with λ < 0, we consider the eigenvector v0 correspond-
ing to the most negative λ. In this case, we rescale the
interaction matrix with a diagonal matrix d constant in
each group, in such a way that the second term of Eq. 12,〈
v0, EP

T (
BP

S
)−1

EPv0
〉
, computed over the vector v0, is

minimized. Here, EP = 1
2

[
zBP

T
BP

−1
�P − 1

z
�A

T
]

is the

off-diagonal matrix defined in Eq. 13 and rescaled with d,
and the optimal value of z ≡ dP/dA is given by

z=

⎛
⎜⎜⎝

〈
�A

T
v0,

(
BP

S
)−1

�A
T
v0

〉
〈(

BP
T
BP

−1
�P

)
v0,

(
BP

S
)−1(

BP
T
BP

−1
�P

)
v0

〉
⎞
⎟⎟⎠

1/4

,

which generalizes the two-species result. After rescaling
the intergroup interactions, we have to test whether the

rescaled symmetric matrix SA = (
CA

)S −EP
T (

BP
S
)−1

EP

is positive definite. The matrix element that we minimize is
non-negative and it can be cancelled if and only if the vector
v0 satisfies the following generalized eigenvector equation:

BP
T
BP

−1
�Pv0 = 1

z2
�A

T
v0 (16)

If this relation does not hold, we cannot exclude that〈
v0, SAv0

〉
is negative even if CA is positive definite. This

possibility suggests that the diagonal positivity of the effec-
tive competition matrix CA is not a sufficient condition for
global stability, but it must be supplemented by the condi-
tion that the intergroup interaction matrices �T

A and �P are
correlated as dictated by Eq. 16 (for mutualistic or compet-
itive interactions), which states that the growth rate gained

by a species of group P through the interaction with a dis-
tribution of abundances v0 in group A is proportional to the
growth rate that the same species provides to the group A

(and analogous interpretation for competitive interactions).
For predatory interactions, Eq. 16 does not hold, since �P

and �A have opposite sign. Nevertheless,

BP
T
BP

−1
�Pv0 = − 1

z2
�A

T
v0 (17)

guarantees that
〈
v0, SAv0

〉
= 〈

v0, BAv0
〉
> 0. Once again,

this relation is not sufficient for diagonal stability, since
other eigenvectors have to be tested for positivity but, since
v0 is the eigenvector with most negative eigenvalue for the
non-rescaled matrix SA, it strongly suggests that the system
is diagonally stable. Note that Eq. 17 also requires that the
intergroup interactions are correlated.

Many species: principal components

A sufficient condition of diagonal stability can be obtained
by rewriting the necessary and sufficient condition Eq. 11
into units specified by the scalar z = dP /dA. We get

SA(z) = bA

[
IA− 1

4
MA(z)

]
bA � 0

↔ IA − 1

4
MA(z) � 0 (18)

MA(z) =
(

z�̃T
P �̃P+ 1

z
�̃A�̃T

A +�̃A�̃P+�̃T
P �̃T

A

)

where IA is the identity matrix, bA =
(
BA

S
)1/2

and

bP =
(
BP

S
)1/2

are the square roots of the direct

competition matrices, and �̃A = (bA)−1 �A (bP)−1,
�̃P = (bP)−1 �P (bA)−1 are competition-rescaled inter-

guild interaction matrices. The Schur matrix SA(z) is pos-
itive definite if and only if λmax(MA(z)) < 4, where
λmax denotes the maximum eigenvalue and MA(z) is the
symmetric matrix in round brackets.

We first consider mutualistic or competitive interactions
for which the signs of the matrices �A and �P are the same.
Since the maximum eigenvalue of a sum of matrices is not
larger than the sum of the maximum eigenvalues, and the
maximum eigenvalue of the product of matrices is not larger
than the product of their maximum singular values, it holds

λmax (MA(z)) ≤ zλmax

(
�̃A�̃T

A

)
+ 1

z
λmax

(
�̃T

P �̃P

)
+2λmax

(
�̃A�̃P

)
≤ 4σmax

(
�̃A

)
σmax

(
�̃P

)
(19)

where we denote by σmax (M) the maximum singular value
of matrix M i.e. σ 2

max (M) = λmax
(
MT M

)
, and we have
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chosen the value of z that minimizes Eq. 19 i.e. z =
σmax

(
�̃P

)
/σmax

(
�̃A

)
. Since λmax (MA(z)) < 4 is suffi-

cient for fulfilling Eq. 19, the above equation shows that
sufficient condition for diagonal stability of A and con-
sequently global stability is that the direct competition
matrices BA and BP are diagonally stable, and moreover,
the main singular values of the rescaled interaction matrices
satisfy

SA(z) � 0↔ BA � 0, BP � 0,

σmax

(
�̃P

)
σmax

(
�̃A

)
< 1 . (20)

If the direct competition matrix BP is diagonally symmetric
(i.e. if BP is symmetric), the effective competition matrix
simplifies to

(
CA

)S = bA

[
IA − 1

2

(
�̃A�̃P + �̃T

P �̃T
A

)]
bA , (21)

and the necessary and sufficient condition for the positiv-

ity of the effective competition is λmax

(
�̃A�̃P

)
< 1, which

is weaker than Eq. 20. However, the two conditions coin-
cide in the important special case in which the main singular
vectors u and v of the interaction matrices �̃A and �̃T

P are
collinear i.e. �̃Au = σmaxv and �̃Pv = σmaxu. In this case,

the main principal vector u satisfies
(
�̃P�̃A + �̃T

A�̃T
P

)
u =

2σ 2
maxu, so that Eq. 20 is in this case also necessary con-

dition for diagonal stability of CA. Thus, we have shown
that, if BP is diagonally symmetric and positive and if the
main singular vectors of the rescaled interaction matrices
coincide, then A is diagonally stable if and only if CA is
diagonally stable. Note that the collinearity condition for
competitive and mutualistic systems implies that the vec-
tor v satisfies �̃Pv = �̃T

Av, which in turn implies Eq. 16
(here z = 1, since we have chosen the optimal value of

the scale factor z, and BP
T
BP

−1 = IP since BP is assumed
to be diagonally symmetric), supporting the view that the
sufficient condition requires a balance between between the
intergroup interactions �P and �T

A.
For predatory systems, (�A)ik ≥ 0 and (�P)ki ≤

0 have opposite sign. If we assume that
〈
x, �̃A�̃Px

〉
≤

0 ∀x, then the effective competition is positive definite,〈
x,

(
CA

)S
x
〉

> 0 ∀x, and the sufficient condition for diag-

onal stability is 〈x, MA(z)x〉 < 4 that can be written as√〈
x, �̃T

P �̃Px
〉 〈

x, �̃A�̃T
Ax

〉
< 2 −

〈
x, �̃A�̃Px

〉
∀x and it

is weaker than the corresponding sufficient condition for
mutualistic or competitive systems. Note that also in this

case the collinearity between principal vectors favours sta-
bility. Collinearity can be written as �̃Au = σv and �̃Pv =
−σu (note the minus sign), which corresponds to Eq. 17,

and it implies that MA(z)u = 0 so that
〈
u, SA(z)u

〉
> 0 and〈

u,
(
CA

)S
u
〉

> 0. Thus, we conjecture that, for predatory

systems whose principal vectors of the interaction matri-
ces are collinear, diagonal stability of the direct competition
matrix BA is sufficient both for diagonal stability of the
effective competition matrix CA and for diagonal stability
of the complete system.

Global stability of mutualistic systems

In Lotka-Volterra mutualistic systems, if the strength of
mutualistic interactions overcomes a threshold, the main
eigenvalue of the effective competition matrix becomes neg-
ative, implying that the typical interspecific competition is
negative and the system is dynamically unstable. The larger
is the system, the smaller the mutualistic interaction strength
at which this instability arises (Bascompte et al. 2006).
However, this instability is an artefact of the LV model in
which the mutualistic growth rates, which are proportional
to abundances, can increase without bounds. In a realistic
model of mutualism, the growth rates should be modelled
through functional responses that saturate (Holland et al.
2002; Holland et al. 2006). One possible model is given by
the following dynamical equations (Bastolla et al. 2009)

1

NP
i

dNP
i

dt
= rP

i −
∑
j∈P

(BP)ijN
P
j +

∑
k∈A

(�P)ikN
A
k

1 + hP
i

∑
l∈A(�P)ilN

A
l

(22)

and analogous for species in the group A, with (�P)ik ≥ 0.
The non-linear terms that limit the growth rates lead to the
existence of additional fixed points with respect to the linear
functional response with hP

i ≡ 0. Depending on whether the
quantity

Yi = hP
i

∑
l∈A

(�P)ilN
∗
l (23)

is small or large at the equilibrium point, the species i is
said to be at a weak or strong mutualistic fix point. Approx-
imate solutions of the fixed point equations can be easily
obtained in the limits Yi � 1 and Yi � 1. For a simple
system with only two mutualistic species, all combinations
of coexistence fixed points exist and it can be shown that
the two-species system has a stable coexistence fixed point
for all combinations of parameters that guarantee feasibility
(Holland et al. 2002)
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The dynamical stability analysis of this non-linear sys-
tem can be performed linearizing the dynamical equations
close to the fixed point N∗

i . This produces Lotka-Volterra
equations with parameters

(
BLV

P

)
ij

= (BP)ij

(
�LV

P

)
ik

= (�P)ik

(1 + Yi)
2

rLV
i = ri + 1

hi

(
Yi

1 + Yi

)2

(24)

It is clear from Eq. 24 that the effective Lotka-Volterra
mutualistic interactions become very small at the strong
mutualistic fixed point Yi � 1. This favours both the local
stability of the fixed point, which is guaranteed if the com-
munity matrix −N∗

i ALV
ij has all eigenvalues with negative

real part, and the global stability of the linearized dynamical
system, which is guaranteed if the interaction matrix of the
Lotka-Volterra system, ALV

ij , is diagonally stable.
Therefore, recent papers that rediscovered that randomly

drawn Lotka-Volterra mutualistic interactions become
locally unstable for smaller number of species than com-
petitive interactions (Allesina and Tang 2012) do not
imply that mutualism is detrimental for species coexis-
tence, if saturation of mutualistic interactions is taken into
account.

We now consider the global stability of Eq. 22. We omit
the superscripts P and A for simplicity of notation. We note
that the derivative of the growth rate can be written as

1

Ni

dNi

dt
≡ fi(N) = f LV

i (N)

(
Yi − Y ∗

i

)2

(1 + Yi)(1 + Y ∗
i )2

≡ f LV
i (N) + gi(N)

where Yi is given by Eq. 23, Y ∗
i is the same at the fixed point

N∗
k , and gi(N), the correction of the time derivative with

respect to the LV system, is always negative, it is a second
order function of the deviation from fixed point abundances,
δNk ≡ (Nk − N∗

k ), and it vanishes for h = 0. The Lya-
punov function proposed by Goh for the LV system is L =∑

i

[
(Ni − N∗

i ) − N∗
i log(Ni/N

∗
i )

]
, and its time derivative

is L̇ = ∑
i δNi

(
f LV

i (N) + gi(N)
)
, whence it appears that

the correction term is stabilizing when δNi > 0 but desta-
bilizing in the opposite case. Each term of L̇ satisfies the
inequality

δNi

(
f LV

i (N) + gi(N)
)

≤
{

δNif
LV
i (N) ifδNi ≥ 0

δNif
LV
i (N, � = 0) ifδNi ≤ 0

where f LV
i (N, � = 0) is the LV growth rate computed

when the mutualistic strength vanishes i.e. it is the purely

competitive growth rate. More compactly, δNi

(
f LV

i (N)

+gi(N)) ≤ max
(
δNif

LV
i (N), δNif

LV
i (N, � = 0)

)
, from

which it follows

L̇ ≤ max
(
−

(
δN, ALVδN

)
, −

(
δN, BLVδN

))
(25)

where ALV is the interaction matrix of the LV system and
BLV is its competitive part. Thus, if the corresponding
LV system is diagonally stable, the mutualistic system is
globally stable as well.

Conclusions and perspectives

This paper is motivated by the benefits of the condition
of global stability for improving the analytic understanding
of model ecological systems with respect to the condi-
tion of local stability, which also includes small attraction
basins that guarantee coexistence only in a small neighbour-
hood of the equilibrium abundances, or even limit cycles
or other complex coexistence conditions. Although global
stability is not a necessary condition for the coexistence of
a model ecosystem, simulations of Lotka-Volterra systems
often converge to globally stable fixed points. Global sta-
bility is a useful mathematical concept because, if it holds,
structural stability is strongly related with the maintainance
of feasibility under perturbations of the intrinsic growth
rates, as we will discuss in another paper. It is worth to men-
tion that the concept of permanence (Hofbauer and Sigmund
1998) allows for the advantages of global stability without
assuming the existence of an equilibrium point. A dynam-
ical system is said to be permanent if the boundary of the
positive cone is repelling. Permanence is equivalent to per-
sistence of all species despite rare large perturbations, while
local stability is equivalent to persistence despite frequent
small perturbations. Advantages and disadvantages of these
definitions are discussed in Schreiber (2006). In this con-
text, structural stability corresponds to robust permanence,
i.e. the dynamical system remains permanent for sufficiently
small perturbations of the parameters (Schreiber 2000).

Here, we discussed diagonal stability, which is a suf-
ficient condition for global stability, in the framework of
the effective competition matrix, which allows reducing
the fixed point of a system with two groups of interacting
species into two smaller systems of effectively competing
species. It is interesting to note that diagonal stability is a
more intrinsic condition than positivity, since it is invariant
under the multiplication times a positive diagonal matrix,
which we interpret as a change of abundance units, while
positivity is not. Under this interpretation, positivity is a too
strict condition for global stability, since it depends on the
units adopted, while global stability is an intrinsic property
independent of the units. We have shown that the effective
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competition matrix also maps the stability properties of the
two effective systems into those of the complete system.
In particular, diagonal stability of the effective competition
matrix is a necessary and sufficient condition for diagonal
stability of the complete interaction matrix A if this matrix
is diagonally symmetric, and it is a necessary condition for
diagonal stability in general.

The general sufficient condition for global stability is
related but apparently it is stronger. We could not deter-
mine whether diagonal stability of the effective competition
matrix is sufficient for diagonal stability of the complete
interaction matrix in general, neither we could find a coun-
terexample, but we provide here sufficient conditions for
global stability in two specific cases: (1) The effective
competition matrix is diagonally stable and the abundance
vector v0 corresponding to the minimum eigenvalue of
SA = CA − ET

P (BS
P )−1EP is well balanced, in the sense

specified by Eq. 16. This has the qualitative meaning that,
when the distribution of animal abundances is given by v0,
the mutualistic biomass that each species provides to the
plants, �Pv0, is proportional to the input of biomass that it

receives from them,
(
�A

)T
v0 (multiplied times the matrix

BP
(
BP

)−T
), and corresponding interpretation for competi-

tive interactions. This condition is not sufficient in general,

but the positivity of SA(z) can be tested numerically, since
we can explicitly compute the parameter z that minimizes
the off-diagonal term over the vector v0. (2) The main singu-
lar values of the competition-rescaled interaction matrices

must be small, σmax

(
�̃P

)
σmax

(
�̃A

)
< 1. This condition

is stronger than the positivity of the effective competition
matrix CA, but the two conditions coincide if the direct
competition matrices BP and BA are diagonally symmet-
ric and the main singular vectors of the rescaled intergroup
interaction matrices are collinear, which implies a balance
condition equivalent to Eq. 16.

We expect that the collinearity of interactions in the two
directions applies in many situations, since the strengths
of the interaction of a species i with species of the other
group in both directions are proportional to their number
of links in the ecological network. Thus, we expect that,
for a broad range of models, diagonal stability of the effec-
tive competition matrix is a sufficient condition for global
stability.

In our opinion, the concept of global stability is quite
relevant in the framework of the debate on the stability-
complexity relationship. In the seminal work by May (1972)
and its sequels, the stability-complexity relationship is
examined assuming that the equilibrium is feasible, which
requires choosing the growth rates ri in such a way that
all equilibrium biomasses are positive, and estimating the
conditional probability that it is stable given that it is fea-
sible. On the other hand, if the interaction matrix satisfies

the conditions discussed in the present work, then the equi-
librium will be automatically stable if it is feasible. If the
equilibrium is not feasible, there will be a maximum sub-
set of species, determined by the growth rates and not by
the initial conditions, that can coexist in a globally stable
equilibrium. Therefore, if the interaction matrix is diago-
nally stable, then the question on stability reduces to the
question on the growth rate parameters that allow feasible
equilibria, since all of these feasible equilibria will be glob-
ally stable due to the diagonal stability of the interaction
matrix. This is consistent with a general result by Smith and
Waltman, who showed that, if a mild uniform dissipative
condition is met, the property that a locally asymptotically
stable steady state is globally attracting is an open condi-
tion in the parameters, therefore small perturbations of the
parameters conserve global stability.

Since the growth rates change due to changes in envi-
ronmental conditions or biological changes in the species
that constitute the ecosystem, this perspective requires to
shift the focus from the dynamical stability of the equilib-
rium formed under a particular set of growth rates, a trivial
question if the interaction matrix is diagonally stable, to the
structural stability of the model ecosystem, meaning by this
the volume of the space of growth rates that give rise to fea-
sible equilibria under a given diagonally stable interaction
matrix. We think that this approach, complementary to the
classical approach to study the stability of the equilibrium
given that it is feasible, is biologically relevant. We have
proposed in previous works how to analytically estimate
the structural stability of an interaction matrix A, which is
naturally related with the effective competition matrix.
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Appendix A: Conditions for diagonal stability of A

Theorem the interaction matrix A = AD is positive defi-
nite; hence, the matrix A describes a globally stable system,
if and only if the matrix

H =
( (

BP
)S

EP

EP
T (

CA
)S

)
(26)

is positive definite, where CA = BA − �A
(
BP

)−1
�P, and

EP = 1
2BP

T
((

BP
)−1

�P− (
BP

)−T
�A

)
. We denote the
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symmetric part of a matrix by the superscript s,
(
CA

)S =
1
2

(
CA + CA

T
)
, and denote B−T as a shortcome of

(
BT

)−1

or, equivalently,
(
B−1

)T
.

Proof The block effective competition matrix CA corre-
sponds to the Schur complement of BP in the matrix A.
One can go from A to a matrix containing CA in a diag-
onal block by means of the Aitken’s block diagonalization
formula (Zhang 2005). This corresponds to

A =
(

BP −�P

−�A BA

)

=
(

IP 0
−�A (BP)−1 IA

) (
BP 0
0 CA

) (
IP − (BP)−1 �P

0 IA

)
≡ LCU , (27)

where L and U correspond to the lower and upper triangular
matrices of the Aitken’s transform, respectively, and C is the
matrix with diagonal blocks equal to BP and CA. Next, we
substitute this expression for A in the condition for diagonal
stability, obtaining

Q′ = 1

2

(
AD + D AT

)
= 1

2

[
L C UD + D UTCT LT

]
� 0.

(28)

We now apply a congruence by U−1 to get the matrix H

H = U−TQ′U−1 = 1

2

[(
U−T L

)
CD +DCT

(
U−T L

)T
]

=
(

BP
S

EP

EP
T

CA
S

)
, (29)

with EP given by Eq. 13 in the main text. Thus, A will be
diagonally stable if and only if there is a positive diagonal
matrix D such that H in Eq. 29 is positive definite.

From this calculation and from Theorem 7.7.6 in Horn
and Johnson (1985), we see that the interaction matrix A

will be positive definite if and only if the following holds:

CA
S − EP

T
(
BP

S
)−1

EP � 0 . (30)

Appendix B: Conditions for positivity of C

We prove here that the effective competition matrix CA is
positive definite if and only if it holds

(BA)S −(�)SA

(
BP

S
)−1

(�)SP + EA
T

(
BP

S
)−1

EA

=SA + EA
T
(
BP

S
)−1

EA � 0 (31)

where SA is given by Eq. 11 and EA is given by Eq.
13 in the main text. We denote by superscripts S and a

the symmetric and antisymmetric part, respectively, and
we use the block notation where B is the matrix whose
diagonal blocks are BP and BA, and � is a matrix whose
off-diagonal blocks are �P and �A, respectively. With this
notation, we can compactly write C = B − �B−1�. The
computation is based on expressing the matrix B−1 as the

sum of its symmetric part,
(
B−1

)S = B−T BSB−1 =(
BS

)−1 + (
B−T Ba

) (
BS

)−1 (
BaB−1

)
and antisymmetric

part
(
B−1

)a = −B−T BaB−1.

− (C)S + (B)S = 1

2

[
� (B)−1 � + �T (B)−T �T

]
= 1

2

[(
�S + �a

) ((
B−1

)S +
(
B−1

)a
)

(
�S + �a

)
+

(
�S − �a

) ((
B−1

)S −
(
B−1

)a
)

(
�S − �a

)]
∼ �S

(
B−1

)S

�S + �a
(
B−1

)S

�a+2�a

(
B−1

)a

�S

= �S
(
BS

)−1
�S + �S

(
B−T Ba

(
BS

)−1
BaB−1

)
�S

+�a
(
B−T BSB−1

)
�a − 2�a

(
B−T BaB−1

)
�S

= �S
(
BS

)−1
�S

−
(
BaB−1�S − BSB−1�a

)T (
BS

)−1

(
BaB−1�S − BSB−1�a

)
= �S

(
BS

)−1
�S + ET

(
BS

)−1
E (32)

where M ∼ N indicates that 〈x, Mx〉 = 〈x, Nx〉
(i.e. we eliminate asymmetric components, such as

�SB−T BaB−1�S or �a
(
BS

)−1
�a). This proves Eq. 31

above.
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